Home
Class 12
MATHS
If | vec a+ vec b|<| vec a- vec b|, ...

If `| vec a+ vec b|<| vec a- vec b|,` then the angle between ` vec aa n d vec b` can lie in the interval a. `(pi//2,pi//2)` b. `(0,pi)` c. `(pi//2,3pi//2)` d. `(0,2pi)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If | vec a|+| vec b|=| vec c|a n d vec a+ vec b= vec c , then find the angle between vec aa n d vec bdot

If three unit vectors vec a , vec b ,a n d vec c satisfy vec a+ vec b+ vec c=0, then find the angle between vec aa n d vec bdot

If vec aa n d vec b are any two vectors of magnitudes 1 and 2, respectively, and (1-3 vec adot vec b)^2+|2 vec a+ vec b+3( vec axx vec b)|^2=47 , then the angel between vec aa n d vec b is a. pi//3 b. pi-cos^(-1)(1//4) c. (2pi)/3 d. cos^(-1)(1//4)

If vec aa n d vec b are two vectors, such that vec adot vec b<0a n d| vec adot vec b|=| vec axx vec b|, then the angle between vectors vec aa n d vec b is pi b. 7pi//4 c. pi//4 d. 3pi//4

If vec aa n d vec b are two vectors of magnitude 1 inclined at 120^0 , then find the angle between vec ba n d vec b- vec adot

If vec a , vec b ,a n d vec c are such that [ vec a vec b vec c]=1, vec c=lambda vec axx vec b , angle, between vec aa n d vec b is (2pi)/3,| vec a|=sqrt(2),| vec b|=sqrt(3)a n d| vec c|=1/(sqrt(3)) , then the angel between vec aa n d vec b is a. pi/6 b. pi/4 c. pi/3 d. pi/2

If unit vectors vec aa n d vec b are inclined at angle 2theta such that | vec a- vec b|<1a n d0lt=thetalt=pi,t h e ntheta lies in interval a. [0,pi//6] b. [5pi//6,pi] c. [pi//6,pi//2] d. [pi//2,5pi//6]

If the angel between unit vectors vec aa n d vec b60^0 , then find the value of | vec a- vec b|dot

Find |vec a| and |vec b| if (vec a + vec b).(vec a - vec b) = 3 and 2|vec b| = |vec a| .

If [ vec a vec b vec c]=2, then find the value of [( vec a+2 vec b- vec c)( vec a- vec b)( vec a- vec b- vec c)]dot