Home
Class 12
MATHS
' I ' is the incentre of triangle A B C ...

`' I '` is the incentre of triangle `A B C` whose corresponding sides are `a , b ,c ,` rspectively. `a vec I A+b vec I B+c vec I C` is always equal to a. ` vec0` b. `(a+b+c) vec B C` c. `( vec a+ vec b+ vec c) vec A C` d. `(a+b+c) vec A B`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that vec a xx (vec b + vec c) + vec b xx(vec a + vec c)+ vec c xx(vec a + vec b) = vec 0

vec a .(vec b + vec c) is equal to

If [ vec a vec b vec c]=2, then find the value of [( vec a+2 vec b- vec c)( vec a- vec b)( vec a- vec b- vec c)]dot

Prove that [ vec a, vec b, vec c + vec d] = [ vec a, vec b, vec c] + [ vec a, vec b , vec d] .

If vec a, vec b, vec c are three given vectors show that [ vec a + vecb + vec c , vecb + vec c , vec a + vec b + vec c ]=0.

For any three vectors vec a, vec b , vec c , show that vec a xx (vec b + vec c) + vec b xx (vec c + vec a) + vec c xx (vec a + vec b) = 0

Prove that if the vectors vec a, vec b, vec c satisfy vec a+ vec b + vec c = vec 0 , then vec bxx vec c = vec c xx vec a = vec a xx vec b

For any three vectors veca, vec b, vec c prove that (vec a + vec b)+ vec c = vec a + (vec b + vec c)

Value of [ vec axx vec b vec axx vec c vec d] is always equal to ( vec a . vec d)[ vec a vec b vec c] b. ( vec a . vec c)[ vec a vec b vec d] c. ( vec a . vec b)[ vec a vec b vec d] d. none of these

The scalar vec Adot ( ( vec B+ vec C)xx( vec A+ vec B+ vec C)) equals a. 0 b. [ vec A vec B vec C]+[ vec B vec C vec A] c. [ vec A vec B vec C] d. none of these