Home
Class 12
MATHS
Let x^2+3y^2=3 be the equation of an ell...

Let `x^2+3y^2=3` be the equation of an ellipse in the `x-y` plane. `Aa n dB` are two points whose position vectors are `-sqrt(3) hat ia n d-sqrt(3) hat i+2 hat kdot` Then the position vector of a point `P` on the ellipse such that `/_A P B=pi//4` is a. `+- hat j` b. `+-( hat i+ hat j)` c. `+- hat i` d. none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the angle between the vectors hat i-2 hat j+3 hat ka n d3 hat i-2 hat j+ hat kdot

If the points with position vectors 60 hat i+2 hat j , 40 hat i-8 hat ja n da hat i-52 hat j are collinear, find the value of adot

Find the projection of vector hat i+3 hat j+7 hat k on the vector 7 hat i- hat j+8 hat kdot

The vector(s) which is/are coplanar with vectors hat i+ hat j+2 hat ka n d hat i+2 hat j+ hat k , and perpendicular to vector hat i+ hat j+ hat k , is/are a. hat j- hat k b. - hat i+ hat j c. hat i- hat j d. - hat j+ hat k

Find the equation of the sphere described on the joint of points Aa n dB having position vectors 2 hat i+6 hat j-7 hat ka n d-2 hat i+4 hat j-3 hat k , respectively, as the diameter. Find the center and the radius of the sphere.

A line passes through the point with position vector 2 hat i-3 hat j+4 hat k and is in the direction of 3 hat i+4 hat j-5 hat kdot Find the equations of the line in vector and Cartesian forms.

A line passes through the point with position vector 2 hat i-3 hat j+4 hat k and is in the direction of 3 hat i+4 hat j-5 hat kdot Find the equations of the line in vector and Cartesian forms.

If the four points with position vectors −2 hat i+ hat j+ hat k, hat i+ hat j + hat k, hat j – hat k and λ hat j+ hat k are coplanar, then λ=

Show that the points with the position vectors 2 hat i + 6 hat j + 3 hat k, hat i + 2 hat j + 7 hat k and 3 hat i + 10 hat j - hat k are collinear.

Show that the points with position vectors 2 hat i + 6 hat j + 3 hat k , hat i + 2 hat j + 7 hat k and 3 hat i + 10 hat j - hat k are collinear.