Home
Class 12
MATHS
If vec xa n d vec y are two non-collin...

If ` vec xa n d vec y` are two non-collinear vectors and `A B C` isa triangle with side lengths `a ,b ,a n dc` satisfying `(20 a-15 b) vec x+(15b-12 c) vec y+(12 c-20 a)( vec xxx vec y)=0,` then triangle `A B C` is a. an acute-angled triangle b. an obtuse-angled triangle c. a right-angled triangle d. an isosceles triangle

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec x and vec y are two non-collinear vectors and ABC is a triangle with side lengths a,b and c satisfying (20a-15b) vec x + (15b-12c) vec y + (12c-20a) vec x xx vec y=0 is:

If vec xa n d vec y are two non-collinear vectors and a, b, and c represent the sides of a A B C satisfying (a-b) vec x+(b-c) vec y+(c-a)( vec xxx vec y)=0, then A B C is (where vec xxx vec y is perpendicular to the plane of xa n dy ) a. an acute-angled triangle b. an obtuse-angled triangle c. a right-angled triangle d. a scalene triangle

The position vectors of the vertices A ,Ba n dC of a triangle are three unit vectors vec a , vec b ,a n d vec c , respectively. A vector vec d is such that vecd dot vec a= vecd dot vec b= vec d dot vec ca n d vec d=lambda( vec b+ vec c)dot Then triangle A B C is a. acute angled b. obtuse angled c. right angled d. none of these

The position vectors of the vertices A ,Ba n dC of a triangle are three unit vectors vec a , vec b ,a n d vec c , respectively. A vector vec d is such that vecd dot vec a= vecd dot vec b= vec d dot vec ca n d vec d=lambda( vec b+ vec c)dot Then triangle A B C is a. acute angled b. obtuse angled c. right angled d. none of these

If vec a ,a n d vec b be two non-collinear unit vector such that vec axx( vec axx vec b)=1/2 vec b , then find the angle between vec a ,a n d vec bdot

The points (-a ,-b),(a , b),(a^2,a b) are (a) vertices of an equilateral triangle (b) vertices of a right angled triangle (c) vertices of an isosceles triangle (d) collinear

If vec a , vec b ,a n d vec c are three non-coplanar non-zero vecrtors, then prove that ( vec a . vec a) vec bxx vec c+( vec a . vec b) vec cxx vec a+( vec a . vec c) vec axx vec b=[ vec b vec c vec a] vec a

If vec a , vec b , vec c ,a n d vec d are four non-coplanar unit vector such that vec d make equal angles with all the three vectors vec a , vec ba n d vec c , then prove that [ vec d vec a vec b]=[ vec d vec c vec b]=[ vec d vec c vec a]dot

Prove that if the vectors vec a, vec b, vec c satisfy vec a+ vec b + vec c = vec 0 , then vec bxx vec c = vec c xx vec a = vec a xx vec b

If vec a , vec ba n d vec c are three non-coplanar vectors, then ( vec a+ vec b+ vec c)dot[( vec a+ vec b)xx( vec a+ vec c)] equals a. 0 b. [ vec a vec b vec c] c. 2[ vec a vec b vec c] d. -[ vec a vec b vec c]