Home
Class 12
MATHS
ABCD  is a quadrilateral and  E  is t...

    ABCD  is a quadrilateral and  E  is the point of intersection of the lines joining the middle points of opposite side. Show that the resultant of            `vec (OA)        ,         vec(OB)        ,         vec(OC)         and         vec(OD)    `      = 4           ` vec(OE)`        ,  where  O  is any point.

Promotional Banner

Similar Questions

Explore conceptually related problems

A B C D is a quadrilateral. E is the point of intersection of the line joining the midpoints of the opposite sides. If O is any point and vec O A+ vec O B+ vec O C+ vec O D=x vec O E ,t h e nx is equal to a. 3 b. 9 c. 7 d. 4

If vecr=(5veca-3vecb)/2 , then the point P whose position vector r divides the line joining the points with position vectors vec and vecb in the ratio:

If ABCD is a quadrilateral and E and F are the midpoints of AC and BD respectively, then prove that vec(AB)+vec(AD)+vec(CB)+vec(CD)=4vec(EF) .

If A B C D is quadrilateral and Ea n dF are the mid-points of A Ca n dB D respectively, prove that vec A B+ vec A D + vec C B + vec C D =4 vec E Fdot

The projection of point P(vecp) on the plane vecr.vecn=q is (vecs) , then

Let D ,Ea n dF be the middle points of the sides B C ,C Aa n dA B , respectively of a triangle A B Cdot Then prove that vec A D+ vec B E+ vec C F= vec0 .

Find the unit vector in the direction of vector vec(AB) where A and B are the points (6, 4,0) and (8, 0,4) respectively.

ABCDE is a pentagon .prove that the resultant of force vec A B , vec A E , vec B C , vec D C , vec E D and vec A C ,is 3 vec A C .

If veca and vecb are position vectors of A and B respectively, then the position vector of a point C in vec(AB) produced such that vec(AC) =2015 vec(AB) is

Let vec a and vec b be the position vectors of the points A and B. Prove that the position vectors of the points which trisects the line segment AB are (veca+2vecb)/(3)and (vecb+2veca)/(3) .