Home
Class 12
MATHS
If vec a , vec b , vec ca n d vec d are...

If ` vec a , vec b , vec ca n d vec d` are four vectors in three-dimensional space with the same initial point and such that `3 vec a-2 vec b+ vec c-2 vec d=0` , show that terminals `A ,B ,Ca n d D` of these vectors are coplanar. Find the point at which `A Ca n dB D` meet. Find the ratio in which `P` divides `A Ca n dB Ddot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a , vec ba n d vec c are unit coplanar vectors, then the scalar triple product [2 vec a- vec b2 vec b- vec c2 vec c- vec a] is a. 0 b. 1 c. -sqrt(3) d. sqrt(3)

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d)dot (vec b- vec c)!=0,

If | vec a|+| vec b|=| vec c|a n d vec a+ vec b= vec c , then find the angle between vec aa n d vec bdot

If vec aa n d vec b are two vectors, then prove that ( vec axx vec b)^2=| vec adot vec a vec adot vec b vec bdot vec a vec bdot vec b| .

If vec aa n d vec b are two vectors of magnitude 1 inclined at 120^0 , then find the angle between vec ba n d vec b- vec adot

If vec a , vec b , vec c ,a n d vec d are four non-coplanar unit vector such that vec d make equal angles with all the three vectors vec a , vec ba n d vec c , then prove that [ vec d vec a vec b]=[ vec d vec c vec b]=[ vec d vec c vec a]dot

If vec a , vec b ,a n d vec c are non-zero vectors such that vec adot vec b= vec adot vec c , then find the geometrical relation between the vectors.

vec a , vec b ,a n d vec c are three vectors of equal magnitude. The angel between each pair of vectors is pi//3 such that | vec a+ vec b+ vec c|=6. Then | vec a| is equal to 2 b. -1 c. 1 d. sqrt(6)//3

If vec aa n d vec b are two given vectors and k is any scalar, then find the vector vec r satisfying vec rxx vec a+k vec r= vec bdot

If vec a , vec ba n d vec c are non-coplanar vectors, prove that the four points 2 vec a+3 vec b- vec c , vec a-2 vec b+3 vec c ,3 vec a+ 4 vec b-2 vec ca n d vec a-6 vec b+6 vec c are coplanar.