Home
Class 12
MATHS
Consider the vectors hat i+cos(beta-alp...

Consider the vectors ` hat i+cos(beta-alpha) hat j+cos(gamma-alpha) hat k ,cos(alpha-beta) hat i+ hat j+"cos"(gamma-beta) hat ka n dcos(alpha-gamma) hat i+cos(beta-gamma) hat k+a hat k `where `alpha,beta`, and `gamma` are different angles. If these vectors are coplanar, show that `a` is independent of `alpha,beta` and `gamma`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : cos^2 (beta-gamma) + cos^2 (gamma-alpha) + cos^2 (alpha-beta) =1+2cos (beta-gamma) cos (gamma-alpha) cos (alpha-beta) .

If cos (alpha - beta) + cos (beta - gamma) + cos (gamma - alpha) = (-3)/(2) then prove that cos alpha + cos beta+ cos gamma = sin alpha + sin beta + sin gamma = 0 .

If tan beta=2sin alpha sin gamma co sec(alpha+gamma) , then cot alpha,cot beta,cotgamma are in

If cos alpha + cos beta + cos gamma = sin alpha + sin beta + sin gamma = 0 , show that cos 3alpha + cos 3 beta + cos gamma = 3 cos (alpha + beta + gamma) and

If alpha,beta "and" gamma are real number without expanding at any stage prove that |{:(1,cos(beta-alpha),cos(gamma-alpha)),(cos(alpha-beta),1,cos(gamma-beta)),(cos(alpha-gamma),cos(beta-gamma),1):}| =0.

Find the projection of the vector hat i + 3 hat j + 7 hat k on the vector 7 hat i - hat j + 8 hat k .

Find angle theta between the vectors vec a = hat i + hat j - hat k and vec b = hat i - hat j + hat k .

Find lambda if the vectors 5 hat i + 2 hat j - hat k and lambda hat i - hat j + 5 hat k are orthogonal.

Prove that cosalpha+cosbeta+cosgamma+cos(alpha+beta+gamma)=4cos((alpha+beta)/2)cos((beta+gamma)/2)cos((gamma+alpha)/2)

Find lambda if the vectors hat i - hat j + hat k , 3 hat i + hat j + 2 hat k and hat i + lambda hat j - 3 hat k are coplanar.