Home
Class 12
MATHS
vec A isa vector with direction cosines ...

` vec A` isa vector with direction cosines `cosalpha,cosbetaa n dcosgammadot` Assuming the `y-z` plane as a mirror, the directin cosines of the reflected image of ` vec A` in the plane are a. `cosalpha,cosbeta,cosgamma` b. `cosalpha,-cosbeta,cosgamma` c. `-cosalpha,cosbeta,cosgamma` d. `-cosalpha,-cosbeta,-cosgamma`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cosalpha+cosbeta+cosgamma+cos(alpha+beta+gamma)=4cos((alpha+beta)/2)cos((beta+gamma)/2)cos((gamma+alpha)/2)

Statement 1: If cosalpha,cosbeta,a n dcosgamma are the direction cosines of any line segment, then cos^2alpha+cos^2beta+cos^2gamma=1. Statement 2: If cosalpha,cosbeta,a n dcosgamma are the direction cosines of any line segment, then cos2alpha+cos2beta+cos2gamma=1.

If cosalpha+cosbeta=1/2a n dsinalpha+sinbeta=1/3,t h e n

If 0ltalphaltbetaltgammagtpi//2 ,then prove that tanalphalt(sinalpha+sinbeta+singamma)/(cosalpha+cosbeta+cosgamma)lttangamma .

P(cosalpha,sinalpha), Q(cosbeta, sinbeta) , R(cosgamma, singamma) are vertices of triangle whose orthocenter is (0, 0) then the value of cos(alpha-beta) + cos(beta-gamma) + cos(gamma-alpha) is

If "cot"(alpha+beta)=0, then "sin"(alpha+2beta) can be (a) -sinalpha (b) sinbeta (c) cosalpha (d) cosbeta

If cosalpha+cosbeta+cosgamma=0a n da l sosinalpha+sinbeta+singamma=0, then prove that cos2alpha+cos2beta+cos2gamma =sin2alpha+sin2beta+sin2gamma=0 sin3alpha+sin3beta+sin3gamma=3sin(alpha+beta+gamma) cos3alpha+cos3beta+cos3gamma=3cos(alpha+beta+gamma)

If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0 , then the value of sin3alpha+8sin3beta+27sin3gamma is a. sin(alpha+beta+gamma) b. 3sin(alpha+beta+gamma) c. 18"sin"(alpha+beta+gamma) d. sin(alpha+2beta+3)

In each of the following cases , determine the direction cosines of the normal to the plane and the distance from the origin . a. z=2 , b.x+y+z=1 , c. 2x+3y-z=5, d.5y+8=0

If (cosalpha)/(cosbeta)=m and (cosalpha)/(sinbeta)=n then prove that (m^(2)+n^(2))cos^(2)beta=n^(2) .