Home
Class 12
MATHS
The vectors 2i+3 hat j ,5 hat i+6 hat j ...

The vectors `2i+3 hat j ,5 hat i+6 hat j` and 8` hat i+lambda hat j` have initial points at (1, 1). Find the value of `lambda` so that the vectors terminate on one straight line.

Text Solution

Verified by Experts

Since the vectors `2hati+3hatj and 5hati+6hatj` have (1, 1) as the initial point, their terminal points are (3, 4) and (6, 7), respectively. The equation of the line joining these two points is `x-y+1=0`. The terminal point of `8hati+lamdahatj` is `(9, lamda + 1)`. Since the vectors terminate on the same straight line, `(9, lamda+1)` lies on `x-y+1=0`.
Therefore,
`" "9-lamda-1+1=0`
or `" "lamda=9`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the values of x and y so that the vectors 4 hat i + 5 hat j and x hat i + y hat j are equal.

If the points with position vectors 60 hat i+2 hat j , 40 hat i-8 hat ja n da hat i-52 hat j are collinear, find the value of adot

Consider the vectors vec a = hat i + 3 hat j + hat k , vec b = 2 hat i - hat j - hat k and vec c = lambda hat i + 7 hat j + 3 hat k (i) Find [ vec a, vec b, vec c] (ii) Find the value of lambda , if the vectors vec a, vec b and vec c are coplanar.

Show that the vectors 2 hat i + 3 hat j + 4 hat k and 4 hat i + 6 hat j + 8 hat k are collinear.

Find lambda if the vectors hat i - hat j + hat k , 3 hat i + hat j + 2 hat k and hat i + lambda hat j - 3 hat k are coplanar.

Find the projection of the vector hat i + hat j on the vector hat i - hat j .

If the vectors 3 hat i + lambda hat j + hat k and 2 hat i - hat j + 8 hat k are perpendicular, then lambda is

The projection of the vector hat i + hat j + hat k along the vector hat j is

Prove that the vectors vec a= hat i+ 2 hat j +3 hat k and vec b=2 hat i- hat j are perpendicular.

If vectors vec a= hat i+2 hat j- hat k , vec b=2 hat i- hat j+ hat ka n d vec c="lambda" hat"i"+ hat"j"+2 hat"k" are coplanar, then find the value of (lambda-4)dot