Home
Class 12
MATHS
If vec a , vec ba n d vec c are non-cop...

If ` vec a , vec ba n d vec c` are non-coplanar vectors, prove that the four points `2 vec a+3 vec b- vec c , vec a-2 vec b+3 vec c ,3 vec a+` 4` vec b-2 vec ca n d vec a-6 vec b+6 vec c` are coplanar.

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a , vec b and vec c are non-coplanar vectors, prove that vectors 3vec a-7 vec b-4 vec c ,3 vec a -2 vec b+ vec c and vec a + vec b +2 vec c are coplanar.

If vec a , vec b ,a n d vec c are three non-coplanar non-zero vecrtors, then prove that ( vec a . vec a) vec bxx vec c+( vec a . vec b) vec cxx vec a+( vec a . vec c) vec axx vec b=[ vec b vec c vec a] vec a

Prove that if the vectors vec a, vec b, vec c satisfy vec a+ vec b + vec c = vec 0 , then vec bxx vec c = vec c xx vec a = vec a xx vec b

If vec a , vec ba n d vec c are three non coplanar vectors, then prove that vec d=( vec adot vec d)/([ vec a vec b vec c])( vec bxx vec c)+( vec bdot vec d)/([ vec a vec b vec c])( vec cxx vec a)+( vec cdot vec d)/([ vec a vec b vec c])( vec axx vec b)

Prove that [ vec a, vec b, vec c + vec d] = [ vec a, vec b, vec c] + [ vec a, vec b , vec d] .

If vec a , vec ba n d vec c are three non-coplanar vectors, then ( vec a+ vec b+ vec c)dot[( vec a+ vec b)xx( vec a+ vec c)] equals a. 0 b. [ vec a vec b vec c] c. 2[ vec a vec b vec c] d. -[ vec a vec b vec c]

If vec a , vec ba n d vec c are unit coplanar vectors, then the scalar triple product [2 vec a- vec b2 vec b- vec c2 vec c- vec a] is a. 0 b. 1 c. -sqrt(3) d. sqrt(3)

Let vec a , vec b ,a n d vec c be any three vectors, then prove that [ vec axx vec b vec bxx vec c vec cxx vec a]=[ vec a vec b vec c]^2dot

If vec a , vec b , vec c are any three noncoplanar vector, then the equaltion [ vec bxx vec c vec cxx vec a vec axx vec b]x^2+[ vec a+ vec b vec b+ vec c vec c+ vec a]x+1+[ vec b- vec c vec c- vec a vec a- vec b]=0 has roots a. real and distinct b. real c. equal d. imaginary

Show that the vectors 2 vec a- vec b+3 vec c , vec a+ vec b-2 vec ca n d vec a+ vec b-3 vec c are non-coplanar vectors (where vec a , vec b , vec c are non-coplanar vectors)