Home
Class 11
MATHS
Two variable chords A Ba n dB C of a cir...

Two variable chords `A Ba n dB C` of a circle `x^2+y^2=r^2` are such that `A B=B C=r` . Find the locus of the point of intersection of tangents at `Aa n dCdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Two variable chords AB and BC of a circle x^(2)+y^(2)=a^(2) are such that AB=BC=a . M and N are the midpoints of AB and BC, respectively, such that the line joining MN intersects the circles at P and Q, where P is closer to AB and O is the center of the circle. The locus of the points of intersection of tangents at A and C is

Two variable chords AB and BC of a circle x^(2)+y^(2)=a^(2) are such that AB=BC=a . M and N are the midpoints of AB and BC, respectively, such that the line joining MN intersects the circles at P and Q, where P is closer to AB and O is the center of the circle. The angle between the tangents at A and C is

From an arbitrary point P on the circle x^2+y^2=9 , tangents are drawn to the circle x^2+y^2=1 , which meet x^2+y^2=9 at Aa n dB . The locus of the point of intersection of tangents at Aa n dB to the circle x^2+y^2=9 is x^2+y^2=((27)/7)^2 (b) x^2-y^2((27)/7)^2 y^2-x^2=((27)/7)^2 (d) none of these

If the tangents to the parabola y^2=4a x intersect the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 at Aa n dB , then find the locus of the point of intersection of the tangents at Aa n dBdot

A variable chord of circle x^(2)+y^(2)+2gx+2fy+c=0 passes through the point P(x_(1),y_(1)) . Find the locus of the midpoint of the chord.

The equation of the locus of the middle point of a chord of the circle x^2+y^2=2(x+y) such that the pair of lines joining the origin to the point of intersection of the chord and the circle are equally inclined to the x-axis is x+y=2 (b) x-y=2 2x-y=1 (d) none of these

A curve is defined parametrically be equations x=t^2a n dy=t^3 . A variable pair of perpendicular lines through the origin O meet the curve of Pa n dQ . If the locus of the point of intersection of the tangents at Pa n dQ is a y^2=b x-1, then the value of (a+b) is____

Find the locus of the point of intersection of the perpendicular tangents of the curve y^2+4y-6x-2=0 .

A variable chord is drawn through the origin to the circle x^2+y^2-2a x=0 . Find the locus of the center of the circle drawn on this chord as diameter.

The tangent at any point P on the circle x^2+y^2=4 meets the coordinate axes at Aa n dB . Then find the locus of the midpoint of A Bdot