Home
Class 11
MATHS
If the pair of straight lines x ysqrt(3)...

If the pair of straight lines `x ysqrt(3)-x^2=0` is tangent to the circle at `Pa n dQ` from the origin `O` such that the area of the smaller sector formed by `C Pa n dC Q` is `3pis qdotu n i t ,` where `C` is the center of the circle, the `O P` equals (a)`((3sqrt(3)))/2` (b) `3sqrt(3)` (c) 3 (d) `sqrt(3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The largest area of the trapezium inscribed in a semi-circle or radius R , if the lower base is on the diameter, is (a) (3sqrt(3))/4R^2 (b) (sqrt(3))/2R^2 (c) (3sqrt(3))/8R^2 (d) R^2

The eccentricity of the locus of point (3h+2,k), where (h , k) lies on the circle x^2+y^2=1 , is 1/3 (b) (sqrt(2))/3 (c) (2sqrt(2))/3 (d) 1/(sqrt(3))

If tan^(-1)x+2cot^(-1)x=(2pi)/3, then x , is equal to (a) (sqrt(3)-1)/(sqrt(3)+1) (b) 3 (c) sqrt(3) (d) sqrt(2)

On the line segment joining (1, 0) and (3, 0) , an equilateral triangle is drawn having its vertex in the fourth quadrant. Then the radical center of the circles described on its sides. (a) (3,-1/(sqrt(3))) (b) (3,-sqrt(3)) (c) (2,-1/sqrt(3)) (d) (2,-sqrt(3))

A curve is represented by the equations x=sec^2ta n dy=cott , where t is a parameter. If the tangent at the point P on the curve where t=pi/4 meets the curve again at the point Q , then |P Q| is equal to (5sqrt(3))/2 (b) (5sqrt(5))/2 (c) (2sqrt(5))/3 (d) (3sqrt(5))/2

A is a point on either of two lines y+sqrt(3)|x|=2 at a distance of 4/sqrt(3) units from their point of intersection. The coordinates of the foot of perpendicular from A on the bisector of the angle between them are (a) (-2/(sqrt(3)),2) (b) (0,0) (c) (2/(sqrt(3)),2) (d) (0,4)

Three equal circles each of radius r touch one another. The radius of the circle touching all the three given circles internally is (a) (2+sqrt(3))r (b) ((2+sqrt(3)))/(sqrt(3))r (c) ((2-sqrt(3)))/(sqrt(3))r (d) (2-sqrt(3))r

If the line y-sqrt(3)x + 3=0 cuts the parabola y^2=x + 2 at A and B, then find the value of PA.PB(where P=(sqrt(3),0)

The area of the triangle formed by joining the origin to the point of intersection of the line xsqrt(5)+2y=3sqrt(5) and the circle x^2+y^2=10 is (a)3 (b) 4 (c) 5 (d) 6

In triangle A B C ,/_A=60^0,/_B=40^0,a n d/_C=80^0dot If P is the center of the circumcircle of triangle A B C with radius unity, then the radius of the circumcircle of triangle B P C is (a)1 (b) sqrt(3) (c) 2 (d) sqrt(3) 2