Home
Class 11
MATHS
The range of values of lambda,lambda>...

The range of values of `lambda,lambda>0` such that the angle `theta` between the pair of tangents drawn from `(lambda,0)` to the circle `x^2+y^2=4` lies in `(pi/2,(2pi)/3)` is (a) `(4/(sqrt(3)),2/(sqrt(2)))` (b) `(0,sqrt(2))` (c) `(1,2)` (d) none of these

Text Solution

Verified by Experts

`pi/3ltthetaltpi`
`pi/6lttheta/2ltpi/2`
`sinpi/6ltsinntheta/2ltsinpi/2`
`1/2<1/a<1`
`2>a>1`
`a in (1,2)`
`a in(-2,-1)uu(1,2)`
option 1 is correct.
Promotional Banner

Similar Questions

Explore conceptually related problems

The angle between the tangents drawn from the point (1, 4) to the parabola y^2=4x is (A) pi/6 (B) pi/4 (C) pi/3 (D) pi/2

The value of ("lim")_(xto2)(sqrt(1+sqrt(2+x))-sqrt(3))/(x-2)i s (a) 1/(8sqrt(3)) (b) 1/(4sqrt(3)) (c) 0 (d) none of these

The points on the line x=2 from which the tangents drawn to the circle x^2+y^2=16 are at right angles is (are) (a) (2,2sqrt(7)) (b) (2,2sqrt(5)) (c) (2,-2sqrt(7)) (d) (2,-2sqrt(5))

If tangents P Q and P R are drawn from a point on the circle x^2+y^2=25 to the ellipse (x^2)/16+(y^2)/(b^2)=1,(b (a) (sqrt(5))/4 (b) (sqrt(7))/4 (c) (sqrt(7))/2 (d) (sqrt(5))/3

An infinite number of tangents can be drawn from (1,2) to the circle x^2+y^2-2x-4y+lambda=0 . Then find the value of lambda

If y=|cosx|+|sinx|,t h e n(dy)/(dx)a tx=(2pi)/3 is (1-sqrt(3))/2 (b) 0 (c) 1/2(sqrt(3)-1) (d) none of these

The value of sin^(-1)("cot"(sin^(-1)((2-sqrt(3))/4+cos^(-1)(sqrt(12))/4+sec^(-1)sqrt(2))))i s (a) 0 (b) pi/2 (c) pi/3 (d) none of these

The solution for x of the equation int_(sqrt(2))^x(dt)/(tsqrt(t^2-1))=pi/2 is pi (b) (sqrt(3))/2 (c) 2sqrt(2) (d) none of these

The value of the definite integral int_0^(pi/2)sqrt(tanx)dx is sqrt(2)pi (b) pi/(sqrt(2)) 2sqrt(2)pi (d) pi/(2sqrt(2))

The value of the definite integral int_0^(pi/2)sqrt(tanx)dx is sqrt(2)pi (b) pi/(sqrt(2)) 2sqrt(2)pi (d) pi/(2sqrt(2))