Home
Class 11
MATHS
Three sided of a triangle have equations...

Three sided of a triangle have equations `L_1-=y-m_i x=o; i=1,2a n d3.` Then `L_1L_2+lambdaL_2L_3+muL_3L_1=0` where `lambda!=0,mu!=0,` is the equation of the circumcircle of the triangle if `1+lambda+mu=m_1m_2+lambdam_2m_3+lambdam_3m_1` `m_1(1+mu)+m_2(1+lambda)+m_3(mu+lambda)=0` `1/(m_3)+1/(m_1)+1/(m_1)=1+lambda+mu` none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=2 is the directrix and (0,1) is the vertex of the parabola x^2+lambday+mu=0 , then (a) lambda=4 (b) mu=8 (c) lambda=-8 (d) mu=4

If lambda = -2, determine the value of |(0,2lambda,1),(lambda^(2),0,3lambda^(2)+1),(-1,6lambda-1,0)| .

If the rank of the matrix [(lambda,-1,0),(0, lambda,-1),(-1,0,lambda)] is 2, then find lambda .

If the equation 4x^2-x-1=0a n d3x^2+(lambda+mu)x+lambda-mu=0 have a root common, then the rational values of lambdaa n dmu are a. lambda=(-3)/4 b. lambda=0 c. mu=3/4 b. mu=0

If lambda = - 2 , determine the value of |{:(0,2lambda,1),(lambda^(2),0,3lambda^(2)+1),(-1,6lambda-1 ,0):}|

If (m_i,1/m_i),i=1,2,3,4 are concyclic points then the value of m_1m_2m_3m_4 is

The direction cosines of a line satisfy the relations lambda(l+m)=n and m n+n l+l m=0. The value of lambda, for which the two lines are perpendicular to each other, is

If m is the slope of a tangent to the curve e^y=1+x^2, then |m|>1 (b) m >1 m >-1 (d) |m|lt=1

The wavelength of two sine waves are lambda_(1) = 1 m and lambda_(2) = 6 m . Calculate the corresponding wave numbers .