Home
Class 11
MATHS
If the conics whose equations are S1:(si...

If the conics whose equations are `S_1:(sin^2theta)x^2+(2htantheta)x y+(cos^2theta)y^2+32 x+16 y+19=0` `S_2:(cos^2theta)x^2-(2h^(prime)cottheta)x y+(sin^2theta)y^2+16 x+32 y+19=0` intersect at four concyclic points, where `theta[0,pi/2],` then the correct statement(s) can be (a)`h+h^(prime)=0` (b) `h-h^(prime)=0` (c)`theta=pi/4` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the equations: sin 2theta - cos 2 theta - sin theta + cos theta = 0

The equation sin^2theta=(x^2+y^2)/(2x y),x , y!=0 is possible if

The equation sin^2theta=(x^2+y^2)/(2x y),x , y!=0 is possible if

If x sin ^3 theta +y cos^3 theta = sin theta cos theta and x sin theta =y cos theta then x^2 +y^2 is

If 0lt= thetalt=pi and the system of equations x+(sin theta)y- (costheta) z =0, (cos theta ) x-y+z=0, (sin theta) x+y-z=0 has a non -trivial solution then theta is

Prove that y=(4sin theta)/((2+cos theta))-theta is an increasing function of theta in [0,(pi)/(2)]

If (cos theta + isin theta)^(2) = x + iy, then show that x^(2) + y^(2) = 1