Home
Class 11
MATHS
On the line segment joining (1, 0) and (...

On the line segment joining (1, 0) and (3, 0) , an equilateral triangle is drawn having its vertex in the fourth quadrant. Then the radical center of the circles described on its sides. (a)`(3,-1/(sqrt(3)))` (b) `(3,-sqrt(3))` (c)`(2,-1/sqrt(3))` (d) `(2,-sqrt(3))`

Promotional Banner

Similar Questions

Explore conceptually related problems

The incenter of the triangle with vertices (1,sqrt(3)),(0,0), and (2,0) is (a) (1,(sqrt(3))/2) (b) (2/3,1/(sqrt(3))) (c) (2/3,(sqrt(3))/2) (d) (1,1/(sqrt(3)))

The value of cot70^0+4cos70^0 is (a) 1/(sqrt(3)) (b) sqrt(3) (c) 2sqrt(3) (d) 1/2

An equilateral triangle S A B is inscribed in the parabola y^2=4a x having its focus at Sdot If chord A B lies towards the left of S , then the side length of this triangle is (a) 2a(2-sqrt(3)) (b) 4a(2-sqrt(3)) (c) a(2-sqrt(3)) (d) 8a(2-sqrt(3))

In an equilateral triangle, three coins of radii 1 unit each are kept so that they touch each other and also the sides of the triangle. The area of the triangle is (fig) 4:2sqrt(3) (b) 6+4sqrt(3) 12+(7sqrt(3))/4 (d) 3+(7sqrt(3))/4

Values (s)(-i)^(1/3) is/are (sqrt(3)-i)/2 b. (sqrt(3)+i)/2 c. (-sqrt(3)-i)/2 d. (-sqrt(3)+i)/2

Three equal circles each of radius r touch one another. The radius of the circle touching all the three given circles internally is (a) (2+sqrt(3))r (b) ((2+sqrt(3)))/(sqrt(3))r (c) ((2-sqrt(3)))/(sqrt(3))r (d) (2-sqrt(3))r

One vertex of an equilateral triangle is (2,2) and its centroid is (-2/sqrt3,2/sqrt3) then length of its side is

Two vertices of an equilateral triangle are (0,0) and ( 3, sqrt(3) ) then the third vertex can be

One angle of an isosceles triangle is 120^0 and the radius of its incircle is sqrt(3)dot Then the area of the triangle in sq. units is (a) 7+12sqrt(3) (b) 12-7sqrt(3) (c) 12+7sqrt(3) (d) 4pi

The length of the chord of the parabola y^2=x which is bisected at the point (2, 1) is (a) 2sqrt(3) (b) 4sqrt(3) (c) 3sqrt(2) (d) 2sqrt(5)