Home
Class 11
MATHS
Two circles of radii aa n db touching ea...

Two circles of radii `aa n db` touching each other externally, are inscribed in the area bounded by `y=sqrt(1-x^2)` and the x-axis. If `b=1/2,` then `a` is equal to (a)`1/4` (b) `1/8` (c) `1/2` (d) `1/(sqrt(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (lim)_(xvecoo)(tan^(-1)x))) is equal to (a)-1 (b) pi/2 (c) -1/(sqrt(2)) (d) 1/(sqrt(2))

Two circles with radii aa n db touch each other externally such that theta is the angle between the direct common tangents, (a > bgeq2) . Then prove that theta=2sin^(-1)((a-b)/(a+b)) .

If 2sec^2A-sec^4A-2cos e c^2A+cos e c^4A=(15)/4,t h e n tan A is equal 1//sqrt(2) (b) 1/2 (c) 1/2sqrt(2) (d) -1/(sqrt(2))

If y="sec"(tan^(-1)x), then (dy)/(dx) at x=1 is equal to: 1/(sqrt(2)) (b) 1/2 (c) 1 (d) sqrt(2)

If y="sec"(tan^(-1)x), then (dy)/(dx) at x=1 is equal to: 1/(sqrt(2)) (b) 1/2 (c) 1 (d) sqrt(2)

If the third term in expansion of (1+x^(log_2x))^5 is 2560 then x is equal to (a) 2sqrt2 (b) 1/8 (c) 1/4 (d) 4sqrt2

The area bounded by the curve y=x^2+2 x+1 and tangent at (1,4) and y -axis is

If 3tan^(-1)(1/(2+sqrt(3)))-tan^(-1)1/x=tan^(-1)1/3, then x is equal to 1 (b) 2 (c) 3 (d) sqrt(2)

If y=(sin^(-1)x)/(sqrt(1-x^2)),t h e n((1-x^2)dy)/(dx) is equal to (a) x+y (b) 1+x y (c) 1-x y (d) x y-2

3 circles of radii a,b,c (a