Home
Class 11
MATHS
Let xa n dy be real variables satisfying...

Let `xa n dy` be real variables satisfying `x^2+y^2+8x-10 y-40=0` . Let `a=max{sqrt((x+2)^2+(y-3)^2)}` and `b=min{sqrt((x+2)^2+(y-3)^2)}` . Then

Promotional Banner

Similar Questions

Explore conceptually related problems

The equation sqrt((x+4)^2+(y+2)^2)+sqrt((x-4)^2+(y-2)^2)=8 represents a

Let xa n dy be two real variable such that x >0a n dx y=1 . Find the minimum value of x+y .

An equation of the curve satisfying x dy - y dx = sqrt(x^(2)-y^(2))dx and y(1) = 0 is

Prove that for all real values of xa n dy ,x^2+2x y+3y^2-6x-2ygeq-11.

x dy - y dx = sqrt(x^(2) + y^(2)) dx

Suppose xa n dy are real numbers and that x^2+9y^2-4x+6y+4=0 . Then the maximum value of ((4x-9y))/2 is__________

The solution of (x dx+y dy)/(x dy-y dx)=sqrt((1-x^2-y^2)/(x^2+y^2)) is

Given y=(5x)/(3sqrt((1-x)^2 ))+sin^2(2x+1), (dy)/(dx)

If xa n dy are real numbers such that 2log(2y-3x)=logx+logy ,then find x/y .

If x , y in R satisfies (x+5)^2+(y-12)^2=(14)^2, then the minimum value of sqrt(x^2+y^2) is__________