Home
Class 11
MATHS
Let A B C be a triangle right-angled at ...

Let `A B C` be a triangle right-angled at `Aa n dS` be its circumcircle. Let `S_1` be the circle touching the lines `A B` and `A C` and the circle `S` internally. Further, let `S_2` be the circle touching the lines `A B` and `A C` produced and the circle `S` externally. If `r_1` and `r_2` are the radii of the circles `S_1` and `S_2` , respectively, show that `r_1r_2=4` area `( A B C)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let C be the circle with centre at (1,1) and radius =1 . If T is the circle centered at (0,y) passing through the origin and touching the circle C externally. Then the radius of T is equal to

If I_1, I_2, I_3 are the centers of escribed circles of A B C , show that are of I_1I_2I_3=(a b c)/(2r)dot

lf a circle C passing through (4,0) touches the circle x^2 + y^2 + 4x-6y-12 = 0 externally at a point (1, -1), then the radius of the circle C is :-

The center(s) of the circle(s) passing through the points (0, 0) and (1, 0) and touching the circle x^2+y^2=9 is (are)

Transverse common tangents are drawn from O to the two circles C_1,C_2 with 4, 2 respectively. Then the ratio of the areas of triangles formed by the tangents drawn from O to the circles C_1 and C_2 and chord of contacts of O w.r.t the circles C_1 and C_2 respectively is

A circle C_1 , of radius 2 touches both x -axis and y - axis. Another circle C_2 whose radius is greater than 2 touches circle and both the axes. Then the radius of circle is

Let C_1 and C_2 be two circles with C_2 lying inside C_1 circle C lying inside C_1 touches C_1 internally andexternally. Identify the locus of the centre of C

A circle is given by x^2 + (y-1) ^2 = 1 , another circle C touches it externally and also the x-axis, then the locus of center is:

In a right angled DeltaABC,angleACB=90^(@). A circle is inscribed in the triangle with radius r, a, b, c are the lengths of the sides BC, AC and AB respectively. Prove that 2r=a+b-c.

Let ABC be an isosceles triangle with base BC. If r is the radius of the circle inscribsed in DeltaABC and r_(1) is the radius of the circle ecribed opposite to the angle A, then the product r_(1) r can be equal to (where R is the radius of the circumcircle of DeltaABC )