Home
Class 12
MATHS
If [ vec a vec b vec c]=2, then find the...

If `[ vec a vec b vec c]=2,` then find the value of `[( vec a+2 vec b- vec c)( vec a- vec b)( vec a- vec b- vec c)]dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that ( vec a- vec b)xx( vec a+ vec b)=2( vec axx vec b)dot

If | vec a|=| vec b|=| vec a+ vec b|=1, then find the value of | vec a- vec b|dot

Let vec a , vec ba n d vec c be three non-coplanar vectors and vec p , vec qa n d vec r the vectors defined by the relation vec p=( vec bxx vec c)/([ vec a vec b vec c]), vec q=( vec cxx vec a)/([ vec a vec b vec c])a n d vec r=( vec axx vec b)/([ vec a vec b vec c])dot Then the value of the expression ( vec a+ vec b)dot vec p+( vec b+ vec c)dot vec q+( vec c+ vec a)dot vec r is a. 0 b. 1 c. 2 d. 3

Value of [ vec axx vec b vec axx vec c vec d] is always equal to ( vec a . vec d)[ vec a vec b vec c] b. ( vec a . vec c)[ vec a vec b vec d] c. ( vec a . vec b)[ vec a vec b vec d] d. none of these

Let vec a , vec b ,a n d vec c be vectors forming right-hand traid. Let vec p=( vec bxx vec c)/([ vec a vec b vec c]), vec q=( vec cxx vec a)/([ vec a vec b vec c]),a n d vec r=( vec axx vec b)/([ vec a vec b vec c]),dot If xuuR^+, then a. x[ vec a vec b vec c]+([ vec p vec q vec r])/x b. x^4[ vec a vec b vec c]^2+([ vec p vec q vec r])/(x^2) has least value =(3/2)^(2//3) c. [ vec p vec q vec r]>0 d. none of these

Given three vectors vec a , vec b ,a n d vec c two of which are non-collinear. Further if ( vec a+ vec b) is collinear with vec c ,( vec b+ vec c) is collinear with vec a ,| vec a|=| vec b|=| vec c|=sqrt(2)dot Find the value of vec a . vec b+ vec b . vec c+ vec c . vec a a. 3 b. -3 c. 0 d. cannot be evaluated

If vec a , vec ba n d vec c are non coplanar vectors and vec axx vec c is perpendicular to vec axx( vec bxx vec c), then the value of [axx( vec bxx vec c)]xx vec c is equal to a. [ vec a vec b vec c] b. 2[ vec a vec b vec c] vec b c. vec0 d. [ vec a vec b vec c] vec a

If vec axx( vec bxx vec c) is perpendicular to ( vec axx vec b)xx vec c , we may have a. ( vec a . vec c)| vec b|^2=( vec a . vec b)( vec b . vec c) b. vec adot vec b=0 c. vec adot vec c=0 d. vec bdot vec c=0

Given vec a=x hat i+y hat j+2 hat k , vec b= hat i- hat j+ hat k , vec c= hat i+2 hat j ; vec a_|_ vec b , vec a . vec c=4. Then a. [ vec a vec b vec c]^2=| vec a| b. [ vec a vec b vec c]^=| vec a| c. [ vec a vec b vec c]^=0 d. [ vec a vec b vec c]^=| vec a|^2

If vec a, vec b, vec c are three given vectors show that [ vec a + vecb + vec c , vecb + vec c , vec a + vec b + vec c ]=0.