Home
Class 12
MATHS
Show that ( vec a- vec b)xx( vec a+ vec ...

Show that `( vec a- vec b)xx( vec a+ vec b)=2( vec axx vec b)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that (vec a - vec b) xx (vec a + vec b) = 2 (vec a xx vec b)

Let the pairs a , ba n dc ,d each determine a plane. Then the planes are parallel if ( vec axx vec c)xx( vec bxx vec d)= vec0 b. ( vec axx vec c)dot( vec bxx vec d)= vec0 c. ( vec axx vec b)xx( vec cxx vec d)= vec0 d. ( vec axx vec b)dot( vec cxx vec d)= vec0

For any four vectors, prove that ( vec bxx vec c)dot( vec axx vec d)+( vec cxx vec a)dot( vec bxx vec d)+( vec axx vec b)dot( vec cxx vec d)=0.

If vectors b ,ca n dd are not coplanar, then prove that vector ( vec axx vec b)xx( vec cxx vec d)+( vec axx vec c)xx( vec d xx vec b)+( vec axx vec d)xx( vec bxx vec c) is parallel to vec adot

Let vec aa n d vec b be unit vectors such that | vec a+ vec b|=sqrt(3) . Then find the value of (2 vec a+5 vec b)dot(3 vec a+ vec b+ vec axx vec b)dot

Prove that (vec a + vec b).(vec a + vec b) = | vec a|^(2) + |vec b|^(2) , if and only if vec a, vec b are perpendicualr, given a ne vec 0, b ne vec 0 .

If vec aa n d vec b are two vectors, then prove that ( vec axx vec b)^2=| vec adot vec a vec adot vec b vec bdot vec a vec bdot vec b| .

If vec a , vec b ,a n d vec c are three non-coplanar non-zero vecrtors, then prove that ( vec a . vec a) vec bxx vec c+( vec a . vec b) vec cxx vec a+( vec a . vec c) vec axx vec b=[ vec b vec c vec a] vec a

Let vec a , vec ba n d vec c be three non-coplanar vecrors and vec r be any arbitrary vector. Then ( vec axx vec b)xx( vec rxx vec c)+( vec bxx vec c)xx( vec rxx vec a)+( vec cxx vec a)xx( vec rxx vec b) is always equal to [ vec a vec b vec c] vec r b. 2[ vec a vec b vec c] vec r c. 3[ vec a vec b vec c] vec r d. none of these

If 4 vec a+5 vec b+9 vec c=0, then ( vec axx vec b)xx[( vec bxx vec c)xx( vec cxx vec a)] is equal to a. vector perpendicular to the plane of a ,b ,c b. a scalar quantity c. vec0 d. none of these