Home
Class 12
MATHS
Prove that vec R+([ vec Rdot( vecbetaxx...

Prove that ` vec R+([ vec Rdot( vecbetaxx( vecbetaxx vecalpha))] vecalpha)/(| vecalphaxx vecbeta|^2)+([ vec Rdot( vecalphaxx( vecalphaxx vecbeta))] vecbeta)/(| vecalphaxx vecbeta|^2)=([ vec R vecalpha vecbeta]( vecalphaxx vecbeta))/(| vecalphaxx vecbeta|^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

if vecalpha||( vecbetaxx vecgamma) , then ( vecalphaxxbeta)dot( vecalphaxx vecgamma) equals to | vecalpha|^2( vecbetadot vecgamma) b. | vecbeta|^2( vecgammadot vecalpha) c. | vecgamma|^2( vecalphadot vecbeta) d. | vecalpha|| vecbeta|| vecgamma|

If |vecalpha|=|vecbeta|=|vecalpha+vecbeta|=4 , then the value of |vecalpha-vecbeta| is

If vecalpha+ vecbeta+ vecgamma=a vecdeltaa n d vecbeta+ vecgamma+ vecdelta=b vecalpha, vecalphaa n d vecdelta are non-colliner, then vecalpha+ vecbeta+ vecgamma+ vecdelta equals a. a vecalpha b. b vecdelta c. 0 d. (a+b) vecgamma

Distance of the point P( vec c) from the line vec r= vec a+lambda vec b is a. |( vec a- vec p)+((( vec p- vec a)dot vec b) vec b)/(| vec b|^2)| b. |( vec b- vec p)+((( vec p- vec a)dot vec b) vec b)/(| vec b|^2)| c. |( vec a- vec p)+((( vec p- vec b)dot vec b) vec b)/(| vec b|^2)| d. none of these

Let vec r be a unit vector satisfying vec rxx vec a= vec b ,w h e r e| vec a|=3a n d| vec b|=2. Then vec r=2/3( vec a+ vec axx vec b) b. vec r=1/3( vec a+ vec axx vec b c. vec r=2/3( vec a- vec axx vec b d. vec r=1/3(- vec a+ vec axx vec b

Let vec aa n d vec b be two non-zero perpendicular vectors. A vecrtor vec r satisfying the equation vec rxx vec b= vec a can be vec b-( vec axx vec b)/(| vec b|^2) b. 2 vec b-( vec axx vec b)/(| vec b|^2) c. | vec a| vec b-( vec axx vec b)/(| vec b|^2) d. | vec b| vec b-( vec axx vec b)/(| vec b|^2)

If vec a , vec b , vec c are three given non-coplanar vectors and any arbitrary vector vec r in space, where Delta1=| vec rdot vec a vec bdot vec a vec cdot vec a vec rdot vec b vec bdot vec b vec cdot vec b vec rdot vec c vec bdot vec c vec cdot vec c| , Delta2=| vec adot vec a vec rdot vec a vec cdot vec a vec adot vec b vec rdot vec b vec cdot vec b vec adot vec c vec rdot vec c vec cdot vec c| Delta3=| vec adot vec a vec bdot vec a vec rdot vec a vec adot vec b vec bdot vec b vec rdot vec b vec adot vec c vec bdot vec c vec rdot vec c| , Delta =| vec adot vec a vec bdot vec a vec cdot vec a vec adot vec b vec bdot vec b vec cdot vec b vec adot vec c vec bdot vec c vec cdot vec c| , then prove that vec r=(Delta1)/ Deltavec a+(Delta2)/Delta vec b+(Delta3)/Delta vec c .

Let vec a , vec ba n d vec c be three non-coplanar vectors and vec p , vec qa n d vec r the vectors defined by the relation vec p=( vec bxx vec c)/([ vec a vec b vec c]), vec q=( vec cxx vec a)/([ vec a vec b vec c])a n d vec r=( vec axx vec b)/([ vec a vec b vec c])dot Then the value of the expression ( vec a+ vec b)dot vec p+( vec b+ vec c)dot vec q+( vec c+ vec a)dot vec r is a. 0 b. 1 c. 2 d. 3

If veca,vecb,vecc are mutually perpendicular vector and veca=alpha(vecaxxvecb)+beta(vecbxxvecc)+gamma(veccxxveca) and [veca vecb vecc]=1 then vecalpha+vecbeta+vecgamma= (A) |veca|^2 (B) -|veca|^2 (C) 0 (D) none of these

Let vec a , vec b ,a n d vec c be vectors forming right-hand traid. Let vec p=( vec bxx vec c)/([ vec a vec b vec c]), vec q=( vec cxx vec a)/([ vec a vec b vec c]),a n d vec r=( vec axx vec b)/([ vec a vec b vec c]),dot If xuuR^+, then a. x[ vec a vec b vec c]+([ vec p vec q vec r])/x b. x^4[ vec a vec b vec c]^2+([ vec p vec q vec r])/(x^2) has least value =(3/2)^(2//3) c. [ vec p vec q vec r]>0 d. none of these