Home
Class 12
MATHS
If vec a , vec b , vec c ,a n d vec d a...

If ` vec a , vec b , vec c ,a n d vec d` are four non-coplanar unit vector such that ` vec d` make equal angles with all the three vectors ` vec a , vec ba n d vec c` , then prove that `[ vec d vec a vec b]=[ vec d vec c vec b]=[ vec d vec c vec a]dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let vec a , vec b ,a n d vec c be any three vectors, then prove that [ vec axx vec b vec bxx vec c vec cxx vec a]=[ vec a vec b vec c]^2dot

For any three vectors veca, vec b, vec c prove that (vec a + vec b)+ vec c = vec a + (vec b + vec c)

Show that the vectors vec a, vec b and vec c are coplanar if vec a + vec b, vec b + vec c, vec c+ vec a are coplanar.

Statement 1: vec a , vec b ,a n d vec c are three mutually perpendicular unit vectors and vec d is a vector such that vec a , vec b , vec ca n d vec d are non-coplanar. If [ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a]=1,t h e n vec d= vec a+ vec b+ vec c Statement 2: [ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a] =>vec d is equally inclined to veca,vecb,vecc.

Prove that [ vec a, vec b, vec c + vec d] = [ vec a, vec b, vec c] + [ vec a, vec b , vec d] .

If three unit vectors vec a , vec b ,a n d vec c satisfy vec a+ vec b+ vec c=0, then find the angle between vec aa n d vec bdot

If vec a ,a n d vec b be two non-collinear unit vector such that vec axx( vec axx vec b)=1/2 vec b , then find the angle between vec a ,a n d vec bdot

If vec a , vec b ,a n d vec c are non-coplanar unit vectors such that vec axx( vec bxx vec c)=( vec b+ vec c)/(sqrt(2)), vec ba n d vec c are non-parallel, then prove that the angel between vec aa n d vec bi s3pi//4.

If vec a , vec b ,a n d vec c are there mutually perpendicular unit vectors and vec d is a unit vector which makes equal angles with vec a , vec b ,a n d vec c , the find the value off | vec a+ vec b+ vec c+ vec d|^2dot

If vec aa n d vec b are two vectors, then prove that ( vec axx vec b)^2=| vec adot vec a vec adot vec b vec bdot vec a vec bdot vec b| .