Home
Class 12
MATHS
If vec a, vec b, vec c are any three mut...

If `vec a, vec b, vec c` are any three mutually perpendicular vectors of equal magnitude a, then `|vec a+ vec b+ vec c|` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

vec a .(vec b + vec c) is equal to

Statement 1: vec a , vec b ,a n d vec c are three mutually perpendicular unit vectors and vec d is a vector such that vec a , vec b , vec ca n d vec d are non-coplanar. If [ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a]=1,t h e n vec d= vec a+ vec b+ vec c Statement 2: [ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a] =>vec d is equally inclined to veca,vecb,vecc.

If vec a , vec b ,a n d vec c are there mutually perpendicular unit vectors and vec d is a unit vector which makes equal angles with vec a , vec b ,a n d vec c , the find the value off | vec a+ vec b+ vec c+ vec d|^2dot

If vec a , vec ba n d vec c are three mutually perpendicular vectors, then the vector which is equally inclined to these vectors is a. vec a+ vec b+ vec c b. vec a/(| vec a|)+ vec b/(| vec b|)+ vec c/(| vec c|) c. vec a/(| vec a|^2)+ vec b/(| vec b|^2)+ vec c/(| vec c|^2) d. | vec a| vec a-| vec b| vec b+| vec c| vec c

Let vec a , vec ba n d vec c be pairwise mutually perpendicular vectors, such that | vec a|=1,| vec b|=2,| vec c|=2. Then find the length of vec a+ vec b+ vec c

If vec a , vec b ,a n d vec c are mutually perpendicular vectors and vec a=alpha( vec axx vec b)+beta( vec bxx vec c)+gamma( vec cxx vec a)a n d[ vec a vec b vec c]=1, then find the value of alpha+beta+gammadot

If vec a , vec b , and vec c are three mutually orthogonal unit vectors, then the triple product [ vec a+ vec b+ vec c vec a+ vec b vec b+ vec c] equals: (a.) 0 (b.) 1 or -1 (c.) 1 (d.) 3

vec a , vec b ,a n d vec c are three vectors of equal magnitude. The angel between each pair of vectors is pi//3 such that | vec a+ vec b+ vec c|=6. Then | vec a| is equal to 2 b. -1 c. 1 d. sqrt(6)//3

vec aa n d vec b are two unit vectors that are mutually perpendicular. A unit vector that is equally inclined to vec a , vec ba n d vec axx vec b is a. 1/(sqrt(2))( vec a+ vec b+ vec axx vec b) b. 1/2( vec axx vec b+ vec a+ vec b) c. 1/(sqrt(3))( vec a+ vec b+ vec axx vec b) d. 1/3( vec a+ vec b+ vec axx vec b)

If vec a , vec b , vec c are any three noncoplanar vector, then the equaltion [ vec bxx vec c vec cxx vec a vec axx vec b]x^2+[ vec a+ vec b vec b+ vec c vec c+ vec a]x+1+[ vec b- vec c vec c- vec a vec a- vec b]=0 has roots a. real and distinct b. real c. equal d. imaginary