Home
Class 12
MATHS
If three unit vectors vec a , vec b ,a ...

If three unit vectors ` vec a , vec b ,a n d vec c` satisfy ` vec a+ vec b+ vec c=0,` then find the angle between ` vec aa n d vec bdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If | vec a|+| vec b|=| vec c|a n d vec a+ vec b= vec c , then find the angle between vec aa n d vec bdot

If vec aa n d vec b are two vectors, such that vec adot vec b<0a n d| vec adot vec b|=| vec axx vec b|, then the angle between vectors vec aa n d vec b is pi b. 7pi//4 c. pi//4 d. 3pi//4

If vec a ,a n d vec b be two non-collinear unit vector such that vec axx( vec axx vec b)=1/2 vec b , then find the angle between vec a ,a n d vec bdot

Let vec a , vec b , vec c be three unit vectors and vec a . vec b= vec a . vec c=0. If the angel between vec b and vec c is pi/3 , then find the value of |[ vec a vec b vec c]| .

If vec a and vec b be two unit vectors such that vec a+ vec b is also a unit vector, then find the angle between vec a and vec b

The position vectors of the vertices A ,Ba n dC of a triangle are three unit vectors vec a , vec b ,a n d vec c , respectively. A vector vec d is such that vecd dot vec a= vecd dot vec b= vec d dot vec ca n d vec d=lambda( vec b+ vec c)dot Then triangle A B C is a. acute angled b. obtuse angled c. right angled d. none of these

The position vectors of the vertices A ,Ba n dC of a triangle are three unit vectors vec a , vec b ,a n d vec c , respectively. A vector vec d is such that vecd dot vec a= vecd dot vec b= vec d dot vec ca n d vec d=lambda( vec b+ vec c)dot Then triangle A B C is a. acute angled b. obtuse angled c. right angled d. none of these

Prove that if the vectors vec a, vec b, vec c satisfy vec a+ vec b + vec c = vec 0 , then vec bxx vec c = vec c xx vec a = vec a xx vec b

Three vectors veca, vec b and vec c satisfy the condition vec a + vec b + vec c = 0 .Evaluate the quantity. mu = vec a.vec b + vec b.vec c+ veca.vec c if |vec a| = 1, |vec b| = 4, |vec c| = 2

If vec a , vec b ,a n d vec c are such that [ vec a vec b vec c]=1, vec c=lambda vec axx vec b , angle, between vec aa n d vec b is (2pi)/3,| vec a|=sqrt(2),| vec b|=sqrt(3)a n d| vec c|=1/(sqrt(3)) , then the angel between vec aa n d vec b is a. pi/6 b. pi/4 c. pi/3 d. pi/2