Home
Class 12
MATHS
If | vec a|+| vec b|=| vec c|a n d vec a...

If `| vec a|+| vec b|=| vec c|a n d vec a+ vec b= vec c ,` then find the angle between ` vec aa n d vec bdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If three unit vectors vec a , vec b ,a n d vec c satisfy vec a+ vec b+ vec c=0, then find the angle between vec aa n d vec bdot

If vec a ,a n d vec b be two non-collinear unit vector such that vec axx( vec axx vec b)=1/2 vec b , then find the angle between vec a ,a n d vec bdot

If vec aa n d vec b are two vectors, such that vec adot vec b<0a n d| vec adot vec b|=| vec axx vec b|, then the angle between vectors vec aa n d vec b is pi b. 7pi//4 c. pi//4 d. 3pi//4

If vec aa n d vec b are unequal unit vectors such that ( vec a- vec b)xx[( vec b+ vec a)xx(2 vec a+ vec b)]= vec a+ vec b , then angle theta between vec aa n d vec b is 0 b. pi//2 c. pi//4 d. pi

Let the vectors vec aa n d vec b be such that | vec a|=3| vec b|=(sqrt(2))/3,t h e n vec axx vec b is a unit vector, if the angel between vec aa n d vec b is?

Let vec a , vec ba n d vec c be unit vectors, such that vec a+ vec b+ vec c= vec x , vec adot vec x=1, vec bdot vec x=3/2,| vec x|=2. Then find the angel between cc and xxdot

vec rxx vec a= vec bxx vec a ; vec rxx vec b= vec axx vec b ; vec a!= vec0; vec b!= vec0; vec a!=lambda vec b ,a n d vec a is not perpendicular to vec b , then find vec r in terms of vec aa n d vec bdot

If vec a . vec b=betaa n d vec axx vec b= vec c ,t h e n vec b is a. ((beta vec a- vec axx vec c))/(| vec a|^2) b. ((beta vec a+ vec axx vec c))/(| vec a|^2) c. ((beta vec c- vec axx vec c))/(| vec a|^2) d. ((beta vec a+ vec axx vec c))/(| vec a|^2)

If vec aa n d vec b are two vectors of magnitude 1 inclined at 120^0 , then find the angle between vec ba n d vec b- vec adot

Given | vec a|=| vec b|=1a n d| vec a+ vec b|=sqrt(3). If vec c is a vector such that vec c- vec a-2 vec b=3( vec axx vec b), then find the value of vec c dot vec b