Home
Class 12
MATHS
Let the vectors vec aa n d vec b be suc...

Let the vectors ` vec aa n d vec b` be such that `| vec a|=3| vec b|=(sqrt(2))/3,t h e n vec axx vec b` is a unit vector, if the angel between ` vec aa n d vec b` is?

Promotional Banner

Similar Questions

Explore conceptually related problems

Let the vectors vec a and vec b be such that |veca| = 3 and |vecb| = (sqrt2)/(3) , then vec a xx vec b is a unit vector, if the angle between veca and vec b is

If vec a and vec b be two unit vectors such that vec a+ vec b is also a unit vector, then find the angle between vec a and vec b

If | vec a|+| vec b|=| vec c|a n d vec a+ vec b= vec c , then find the angle between vec aa n d vec bdot

If vec a ,a n d vec b be two non-collinear unit vector such that vec axx( vec axx vec b)=1/2 vec b , then find the angle between vec a ,a n d vec bdot

If vec a , vec b ,a n d vec c are non-coplanar unit vectors such that vec axx( vec bxx vec c)=( vec b+ vec c)/(sqrt(2)), vec ba n d vec c are non-parallel, then prove that the angel between vec aa n d vec bi s3pi//4.

If vec a , vec b ,a n d vec c are such that [ vec a vec b vec c]=1, vec c=lambda vec axx vec b , angle, between vec aa n d vec b is (2pi)/3,| vec a|=sqrt(2),| vec b|=sqrt(3)a n d| vec c|=1/(sqrt(3)) , then the angel between vec aa n d vec b is a. pi/6 b. pi/4 c. pi/3 d. pi/2

Let vec aa n d vec b be unit vectors such that | vec a+ vec b|=sqrt(3) . Then find the value of (2 vec a+5 vec b)dot(3 vec a+ vec b+ vec axx vec b)dot

If vec aa n d vec b are unequal unit vectors such that ( vec a- vec b)xx[( vec b+ vec a)xx(2 vec a+ vec b)]= vec a+ vec b , then angle theta between vec aa n d vec b is 0 b. pi//2 c. pi//4 d. pi

If vec a and vec b are two vectors such that | vec axx vec b|=2, then find the value of [ vec a vec b vec axx vec b].

If three unit vectors vec a , vec b ,a n d vec c satisfy vec a+ vec b+ vec c=0, then find the angle between vec aa n d vec bdot