Home
Class 12
MATHS
If vec a , vec b ,a n d vec c are there...

If ` vec a , vec b ,a n d vec c` are there mutually perpendicular unit vectors and ` vec d` is a unit vector which makes equal angles with ` vec a , vec b ,a n d vec c` , the find the value off `| vec a+ vec b+ vec c+ vec d|^2dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Statement 1: vec a , vec b ,a n d vec c are three mutually perpendicular unit vectors and vec d is a vector such that vec a , vec b , vec ca n d vec d are non-coplanar. If [ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a]=1,t h e n vec d= vec a+ vec b+ vec c Statement 2: [ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a] =>vec d is equally inclined to veca,vecb,vecc.

If vec a , a n d vec b are unit vectors , then find the greatest value of | vec a+ vec b|+| vec a- vec b|dot

If the angel between unit vectors vec aa n d vec b60^0 , then find the value of | vec a- vec b|dot

If vec a, vec b, vec c are any three mutually perpendicular vectors of equal magnitude a, then |vec a+ vec b+ vec c| is equal to

If vec a , vec ba n d vec c are three mutually perpendicular vectors, then the vector which is equally inclined to these vectors is a. vec a+ vec b+ vec c b. vec a/(| vec a|)+ vec b/(| vec b|)+ vec c/(| vec c|) c. vec a/(| vec a|^2)+ vec b/(| vec b|^2)+ vec c/(| vec c|^2) d. | vec a| vec a-| vec b| vec b+| vec c| vec c

If vec a , vec b ,a n d vec c are mutually perpendicular vectors and vec a=alpha( vec axx vec b)+beta( vec bxx vec c)+gamma( vec cxx vec a)a n d[ vec a vec b vec c]=1, then find the value of alpha+beta+gammadot

If vec a , vec b , vec c ,a n d vec d are four non-coplanar unit vector such that vec d make equal angles with all the three vectors vec a , vec ba n d vec c , then prove that [ vec d vec a vec b]=[ vec d vec c vec b]=[ vec d vec c vec a]dot

If vec(a),vec(b),vec(c),are mutually perpendicular unit vectors,then |vec(a)+vec(b)+vec(c)| is …………..

If ( vec axx vec b)^2+( vec a dot vec b)^2=144a n d| vec a|=4, then find the value of | vec b|dot

Let vec a , vec ba n d vec c be pairwise mutually perpendicular vectors, such that | vec a|=1,| vec b|=2,| vec c|=2. Then find the length of vec a+ vec b+ vec c