Home
Class 12
MATHS
If vec axx vec b= vec cxx vec da n d ve...

If ` vec axx vec b= vec cxx vec da n d vec axx vec c= vec bxx vec d ,` then show that ` vec a- vec d ,` is parallel to ` vec b- vec c` provided ` vec a!= harr d` and ` vec b!= vec c dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If | vec a|+| vec b|=| vec c|a n d vec a+ vec b= vec c , then find the angle between vec aa n d vec bdot

If vec p , vec q , vec r denote vector vec bxx vec c , vec cxx vec a , vec axx vec b , respectively, show that vec a is parallel to vec qxx vec r , vec b is parallel vec rxx vec p , vec c is parallel to vec pxx vec qdot

Given that vec adot vec b= vec adot vec c , vec axx vec b= vec axx vec ca n d vec a is not a zero vector. Show that vec b= vec cdot

Prove that [ vec a, vec b, vec c + vec d] = [ vec a, vec b, vec c] + [ vec a, vec b , vec d] .

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d)dot (vec b- vec c)!=0,

Let vec a , vec ba n d vec c be three non-coplanar vecrors and vec r be any arbitrary vector. Then ( vec axx vec b)xx( vec rxx vec c)+( vec bxx vec c)xx( vec rxx vec a)+( vec cxx vec a)xx( vec rxx vec b) is always equal to [ vec a vec b vec c] vec r b. 2[ vec a vec b vec c] vec r c. 3[ vec a vec b vec c] vec r d. none of these

If vec a= vec p+ vec q , vec pxx vec b=0a n d vec qdot vec b=0, then prove that ( vec bxx( vec axx vec b))/( vec bdot vec b)= vec qdot

If vec a+2 vec b+3 vec c=0,t h e n vec axx vec b+ vec bxx vec c+ vec cxx vec a= 2( vec axx vec b) b. 6( vec bxx vec c) c. 3( vec cxx vec a) d. vec0

Statement 1: vec a , vec b ,a n d vec c are three mutually perpendicular unit vectors and vec d is a vector such that vec a , vec b , vec ca n d vec d are non-coplanar. If [ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a]=1,t h e n vec d= vec a+ vec b+ vec c Statement 2: [ vec d vec b vec c]=[ vec d vec a vec b]=[ vec d vec c vec a] =>vec d is equally inclined to veca,vecb,vecc.

If the vectors vec a , vec b ,a n d vec c form the sides B C ,C Aa n dA B , respectively, of triangle A B C ,t h e n (a) vec a . vec b+ vec b . vec c+ vec c . vec a=0 (b) vec axx vec b= vec bxx vec c= vec cxx vec a (c) vec adot vec b= vec bdot vec c= vec c dot vec a (d) vec axx vec b+ vec bxx vec c+ vec cxx vec a=0