Home
Class 12
MATHS
Given three vectors vec a , vec b ,a n ...

Given three vectors ` vec a , vec b ,a n d vec c` two of which are non-collinear. Further if `( vec a+ vec b)` is collinear with ` vec c ,( vec b+ vec c)` is collinear with ` vec a ,| vec a|=| vec b|=| vec c|=sqrt(2)dot` Find the value of ` vec a . vec b+ vec b . vec c+ vec c . vec a` a. `3` b. `-3` c. `0` d. cannot be evaluated

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a , vec ba n d vec c are three non-zero vectors, no two of which ar collinear, vec a+2 vec b is collinear with vec c and vec b+3 vec c is collinear with vec a , then find the value of | vec a+2 vec b+6 vec c|dot

If vec a, vec b, vec c are unit vectors such that vec a+ vec b+ vec c =0 , find the value of vec a.vec b+ vec b .vec c + vec c. vec a .

Given | vec a|=| vec b|=1a n d| vec a+ vec b|=sqrt(3). If vec c is a vector such that vec c- vec a-2 vec b=3( vec axx vec b), then find the value of vec c dot vec b

If vec a , vec ba n d vec c are non coplanar vectors and vec axx vec c is perpendicular to vec axx( vec bxx vec c), then the value of [axx( vec bxx vec c)]xx vec c is equal to a. [ vec a vec b vec c] b. 2[ vec a vec b vec c] vec b c. vec0 d. [ vec a vec b vec c] vec a

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=0

Let vec a , vec ba n d vec c be pairwise mutually perpendicular vectors, such that | vec a|=1,| vec b|=2,| vec c|=2. Then find the length of vec a+ vec b+ vec c

If vec a , vec ba n d vec c are three non coplanar vectors, then prove that vec d=( vec adot vec d)/([ vec a vec b vec c])( vec bxx vec c)+( vec bdot vec d)/([ vec a vec b vec c])( vec cxx vec a)+( vec cdot vec d)/([ vec a vec b vec c])( vec axx vec b)

If vec a , vec ba n d vec c are unit vectors satisfying | vec a- vec b|^2+| vec b- vec c|^2+| vec c- vec a|^2=9, then |2 vec a+5 vec b+5 vec c| is.

Vectors vec a and vec b are non-collinear. Find for what value of n vectors vec c=(n-2) vec a+ vec b and vec d=(2n+1) vec a- vec b are collinear?

If [ vec a vec b vec c]=2, then find the value of [( vec a+2 vec b- vec c)( vec a- vec b)( vec a- vec b- vec c)]dot