Home
Class 12
MATHS
A line l is passing through the point ...

A line `l` is passing through the point ` vec b` and is parallel to vector `vecc` Determine the distance of point `A( vec a)` from the line `l` in the form ` vec b- vec a+(( vec a- vec b) vec c)/(| vec c|^2) vec c` or `(|( vec b- vec a)xx vec c|)/(|vecc|)` .

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that vec a xx (vec b + vec c) + vec b xx(vec a + vec c)+ vec c xx(vec a + vec b) = vec 0

For any three vectors veca, vec b, vec c prove that (vec a + vec b)+ vec c = vec a + (vec b + vec c)

Show that for any three vectors veca , vec b and vec c [ vec a + vec b, vecb + vec c , vec c + vec a ] =2[vec a , vec b , vecc] .

If [ vec a vec b vec c]=2, then find the value of [( vec a+2 vec b- vec c)( vec a- vec b)( vec a- vec b- vec c)]dot

Prove that [ vec a, vec b, vec c + vec d] = [ vec a, vec b, vec c] + [ vec a, vec b , vec d] .

The equation of a line passing through the point vec a parallel to the plane vec rdot vec n=q and perpendicular to the line vec r= vec b+t vec c is a. vec r= vec a+lambda( vec nxx vec c) b. ( vec r- vec a)xx( vec nxx vec c) c. vec r= vec b+lambda( vec nxx vec c) d. none of these

The length of the perpendicular form the origin to the plane passing through the point a and containing the line vec r= vec b+lambda vec c is a. ([ vec a vec b vec c])/(| vec axx vec b+ vec bxx vec c+ vec cxx vec a|) b. ([ vec a vec b vec c])/(| vec axx vec b+ vec bxx vec c|) c. ([ vec a vec b vec c])/(| vec bxx vec c+ vec cxx vec a|) d. ([ vec a vec b vec c])/(| vec cxx vec a+ vec axx vec b|)

Prove that if the vectors vec a, vec b, vec c satisfy vec a+ vec b + vec c = vec 0 , then vec bxx vec c = vec c xx vec a = vec a xx vec b

If vec a is parallel to vec bxx vec c , then ( vec axx vec b)dot( vec axx vec c) is equal to a. | vec a|^2( vec b . vec c) b. | vec b|^2( vec a . vec c) c. | vec c|^2( vec a . vec b) d. none of these

For any three vectors vec a, vec b , vec c , show that vec a xx (vec b + vec c) + vec b xx (vec c + vec a) + vec c xx (vec a + vec b) = 0