Home
Class 12
MATHS
If vec axx( vec bxx vec c) is perpendic...

If ` vec axx( vec bxx vec c)` is perpendicular to `( vec axx vec b)xx vec c ,` we may have a.`( vec a . vec c)| vec b|^2=( vec a . vec b)( vec b . vec c)` b. ` vec adot vec b=0` c. ` vec adot vec c=0` d. ` vec bdot vec c=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a , vec ba n d vec c are non coplanar vectors and vec axx vec c is perpendicular to vec axx( vec bxx vec c), then the value of [axx( vec bxx vec c)]xx vec c is equal to a. [ vec a vec b vec c] b. 2[ vec a vec b vec c] vec b c. vec0 d. [ vec a vec b vec c] vec a

Prove that vec a xx (vec b + vec c) + vec b xx(vec a + vec c)+ vec c xx(vec a + vec b) = vec 0

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=0

If [ vec a vec b vec c]=2, then find the value of [( vec a+2 vec b- vec c)( vec a- vec b)( vec a- vec b- vec c)]dot

For any three vectors veca, vec b, vec c prove that (vec a + vec b)+ vec c = vec a + (vec b + vec c)

If vec a is parallel to vec bxx vec c , then ( vec axx vec b)dot( vec axx vec c) is equal to a. | vec a|^2( vec b . vec c) b. | vec b|^2( vec a . vec c) c. | vec c|^2( vec a . vec b) d. none of these

The condition for equations vec rxx vec a= vec ba n d vec rxx vec c= vec d to be consistent is a. vec b . vec c= vec a . vec d b. vec a . vec b= vec c .vec d c. vec b . vec c+ vec a . vec d=0 d. vec adot vec b+ vec c .vec d=0

If vec a+2 vec b+3 vec c=0,t h e n vec axx vec b+ vec bxx vec c+ vec cxx vec a= 2( vec axx vec b) b. 6( vec bxx vec c) c. 3( vec cxx vec a) d. vec0

Value of [ vec axx vec b vec axx vec c vec d] is always equal to ( vec a . vec d)[ vec a vec b vec c] b. ( vec a . vec c)[ vec a vec b vec d] c. ( vec a . vec b)[ vec a vec b vec d] d. none of these

If vec aa n d vec b are two vectors, then prove that ( vec axx vec b)^2=| vec adot vec a vec adot vec b vec bdot vec a vec bdot vec b| .