Home
Class 12
MATHS
The scalarsla n dm such that l vec a+m v...

The scalars`la n dm` such that `l vec a+m vec b= vec c ,w h e r e vec a , vec ba n d vec c` are given vectors, are equal to a)l=(cxb).(axb)/(axb)^2 b) b.l=(cxb).(bxa)/(bxa)^2 c) c).m=(cxb).(bxa)/(bxa)^2 d) d) m=(cxb).(axb)/(axb)^2

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that [ vec a, vec b, vec c + vec d] = [ vec a, vec b, vec c] + [ vec a, vec b , vec d] .

If vec axx vec b= vec bxx vec c!=0,w h e r e vec a , vec b ,a n d vec c are coplanar vectors, then for some scalar k prove that vec a+ vec c=k vec bdot

Given that vec adot vec b= vec adot vec c , vec axx vec b= vec axx vec ca n d vec a is not a zero vector. Show that vec b= vec cdot

Vectors vec Aa n d vec B satisfying the vector equation vec A+ vec B= vec a , vec Axx vec B= vec ba n d vec A*vec a=1,w h e r e vec aa n d vec b are given vectors, are a. vec A=(( vec axx vec b)- vec a)/(a^2) b. vec B=(( vec bxx vec a)+ vec a(a^2-1))/(a^2) c. vec A=(( vec axx vec b)+ vec a)/(a^2) d. vec B=(( vec bxx vec a)- vec a(a^2-1))/(a^2)

If vec rdot vec a= vec rdot vec b= vec rdot vec c=0,w h e r e vec a , vec b ,a n d vec c are non-coplanar, then vec r_|_( vec cxx vec a) b. vec r_|_( vec axx vec b) c. vec r_|_( vec bxx vec c) d. vec r= vec0

Show that the vectors 2 vec a- vec b+3 vec c , vec a+ vec b-2 vec ca n d vec a+ vec b-3 vec c are non-coplanar vectors (where vec a , vec b , vec c are non-coplanar vectors)

If vec ba n d vec c are two-noncollinear vectors such that vec a||( vec bxx vec c), then prove that ( vec axx vec b) . ( vec axx vec c) is equal to | vec a|^2( vec bdot vec c)dot

If three unit vectors vec a , vec b ,a n d vec c satisfy vec a+ vec b+ vec c=0, then find the angle between vec aa n d vec bdot

Let vec a , vec b ,a n d vec c be any three vectors, then prove that [ vec axx vec b vec bxx vec c vec cxx vec a]=[ vec a vec b vec c]^2dot

If ( vec axx vec b)xx( vec bxx vec c)= vec b ,w h e r e vec a , vec b ,a n d vec c are nonzero vectors, then (a) vec a , vec b ,a n d vec c can be coplanar (b) vec a , vec b ,a n d vec c must be coplanar (c) vec a , vec b ,a n d vec c cannot be coplanar (d)none of these