Home
Class 12
MATHS
If O A B C is a tetrahedron where O is t...

If `O A B C` is a tetrahedron where `O` is the orogin anf `A ,B ,a n dC` are the other three vertices with position vectors, ` vec a , vec b ,a n d vec c` respectively, then prove that the centre of the sphere circumscribing the tetrahedron is given by position vector `(a^2( vec bxx vec c)+b^2( vec cxx vec a)+c^2( vec axx vec b))/(2[ vec a vec b vec c])` .

Promotional Banner

Similar Questions

Explore conceptually related problems

For any three vectors veca, vec b, vec c prove that (vec a + vec b)+ vec c = vec a + (vec b + vec c)

Prove that [ vec a, vec b, vec c + vec d] = [ vec a, vec b, vec c] + [ vec a, vec b , vec d] .

If vec a , vec ba n d vec c are the position vectors of the vertices A ,Ba n dC respectively, of A B C , prove that the perpendicular distance of the vertex A from the base B C of the triangle A B C is (| vec axx vec b+ vec bxx vec c+ vec cxx vec a|)/(| vec c- vec b|)dot

If vec aa n d vec b are two vectors, then prove that ( vec axx vec b)^2=| vec adot vec a vec adot vec b vec bdot vec a vec bdot vec b| .

Let vec a , vec b ,a n d vec c be any three vectors, then prove that [ vec axx vec b vec bxx vec c vec cxx vec a]=[ vec a vec b vec c]^2dot

For any four vectors, prove that ( vec bxx vec c)dot( vec axx vec d)+( vec cxx vec a)dot( vec bxx vec d)+( vec axx vec b)dot( vec cxx vec d)=0.

If vec a , vec ba n d vec c are three non coplanar vectors, then prove that vec d=( vec adot vec d)/([ vec a vec b vec c])( vec bxx vec c)+( vec bdot vec d)/([ vec a vec b vec c])( vec cxx vec a)+( vec cdot vec d)/([ vec a vec b vec c])( vec axx vec b)

If vec a+2 vec b+3 vec c=0,t h e n vec axx vec b+ vec bxx vec c+ vec cxx vec a= 2( vec axx vec b) b. 6( vec bxx vec c) c. 3( vec cxx vec a) d. vec0

For any three vectors vec a, vec b , vec c , show that vec a xx (vec b + vec c) + vec b xx (vec c + vec a) + vec c xx (vec a + vec b) = 0

Show that for any three vectors veca , vec b and vec c [ vec a + vec b, vecb + vec c , vec c + vec a ] =2[vec a , vec b , vecc] .