Home
Class 12
MATHS
Column I, Column II If | vec a|=| vec b|...

Column I, Column II If `| vec a|=| vec b|=| vec c|` , angel between each pair of vecrtor is `pi/3` and `| vec a+ vec b+ vec c|=sqrt(6),t h e n2| vec a|` is equal to, p. 3 If ` vec a` is perpendicular to ` vec b+ vec c , vec b` is perpendicular to ` vec c+ vec a , vec c` is perpendicular to ` vec a+ vec b ,| vec a|=2,| vec b|=3a n d| vec c|=6,t h e n| vec a+ vec b+ vec c|-2` is equal to, q. 2 ` vec a=2 hat i+3 hat j- hat k , vec b=- hat i-4 hat k , vec c= hat i+ hat j+ hat ka n d vec d=3 hat k+2 hat j+ hat k ,t h e n1/7( hat axx hat b)dot( hat cxx hat d)` is equal to, r. 4 If `| vec a|=| vec b|=| vec c|=2a n d vec adot vec b= vec bdot vec c= vec cdot vec a=2,t h e n[ vec a vec b vec c]cos 45^0` is equal to, s. 5

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a and vec b are two vectors such that vec a + vec b is perpendicular to vec a - vec b ,then prove that |vec a| = |vec b| .

Prove that [ vec a, vec b, vec c + vec d] = [ vec a, vec b, vec c] + [ vec a, vec b , vec d] .

Show that for any three vectors veca , vec b and vec c [ vec a + vec b, vecb + vec c , vec c + vec a ] =2[vec a , vec b , vecc] .

Let vec a , vec ba n d vec c be pairwise mutually perpendicular vectors, such that | vec a|=1,| vec b|=2,| vec c|=2. Then find the length of vec a+ vec b+ vec c

Given vec a=x hat i+y hat j+2 hat k , vec b= hat i- hat j+ hat k , vec c= hat i+2 hat j ; vec a_|_ vec b , vec a . vec c=4. Then a. [ vec a vec b vec c]^2=| vec a| b. [ vec a vec b vec c]^=| vec a| c. [ vec a vec b vec c]^=0 d. [ vec a vec b vec c]^=| vec a|^2

Prove that vec a xx (vec b + vec c) + vec b xx(vec a + vec c)+ vec c xx(vec a + vec b) = vec 0

If vec a is parallel to vec bxx vec c , then ( vec axx vec b)dot( vec axx vec c) is equal to a. | vec a|^2( vec b . vec c) b. | vec b|^2( vec a . vec c) c. | vec c|^2( vec a . vec b) d. none of these

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=0

If vec a+2 vec b+3 vec c=0,t h e n vec axx vec b+ vec bxx vec c+ vec cxx vec a= 2( vec axx vec b) b. 6( vec bxx vec c) c. 3( vec cxx vec a) d. vec0

If vec a , vec ba n d vec c are unit vectors satisfying | vec a- vec b|^2+| vec b- vec c|^2+| vec c- vec a|^2=9, then |2 vec a+5 vec b+5 vec c| is.