Home
Class 12
MATHS
if vecalpha||( vecbetaxx vecgamma) , th...

if ` vecalpha||( vecbetaxx vecgamma)` , then `( vecalphaxxbeta)dot( vecalphaxx vecgamma)` equals to `| vecalpha|^2( vecbetadot vecgamma)` b. `| vecbeta|^2( vecgammadot vecalpha)` c. `| vecgamma|^2( vecalphadot vecbeta)` d. `| vecalpha|| vecbeta|| vecgamma|`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a is parallel to vec bxx vec c , then ( vec axx vec b)dot( vec axx vec c) is equal to a. | vec a|^2( vec b . vec c) b. | vec b|^2( vec a . vec c) c. | vec c|^2( vec a . vec b) d. none of these

Prove that vec R+([ vec Rdot( vecbetaxx( vecbetaxx vecalpha))] vecalpha)/(| vecalphaxx vecbeta|^2)+([ vec Rdot( vecalphaxx( vecalphaxx vecbeta))] vecbeta)/(| vecalphaxx vecbeta|^2)=([ vec R vecalpha vecbeta]( vecalphaxx vecbeta))/(| vecalphaxx vecbeta|^2)

If |vecalpha|=|vecbeta|=|vecalpha+vecbeta|=4 , then the value of |vecalpha-vecbeta| is

If vecalpha+ vecbeta+ vecgamma=a vecdeltaa n d vecbeta+ vecgamma+ vecdelta=b vecalpha, vecalphaa n d vecdelta are non-colliner, then vecalpha+ vecbeta+ vecgamma+ vecdelta equals a. a vecalpha b. b vecdelta c. 0 d. (a+b) vecgamma

If veca,vecb,vecc are mutually perpendicular vector and veca=alpha(vecaxxvecb)+beta(vecbxxvecc)+gamma(veccxxveca) and [veca vecb vecc]=1 then vecalpha+vecbeta+vecgamma= (A) |veca|^2 (B) -|veca|^2 (C) 0 (D) none of these

If a( vecalphaxx vecbeta)+b( vecbetaxx vecgamma)+c( vecgammaxx vecalpha)=0 and at least one of a ,ba n dc is nonzero, then vectors vecalpha, vecbetaa n d vecgamma are a. parallel b. coplanar c. mutually perpendicular d. none of these

Distance of the point P( vec c) from the line vec r= vec a+lambda vec b is a. |( vec a- vec p)+((( vec p- vec a)dot vec b) vec b)/(| vec b|^2)| b. |( vec b- vec p)+((( vec p- vec a)dot vec b) vec b)/(| vec b|^2)| c. |( vec a- vec p)+((( vec p- vec b)dot vec b) vec b)/(| vec b|^2)| d. none of these

Column I, Column II If | vec a|=| vec b|=| vec c| , angel between each pair of vecrtor is pi/3 and | vec a+ vec b+ vec c|=sqrt(6),t h e n2| vec a| is equal to, p. 3 If vec a is perpendicular to vec b+ vec c , vec b is perpendicular to vec c+ vec a , vec c is perpendicular to vec a+ vec b ,| vec a|=2,| vec b|=3a n d| vec c|=6,t h e n| vec a+ vec b+ vec c|-2 is equal to, q. 2 vec a=2 hat i+3 hat j- hat k , vec b=- hat i-4 hat k , vec c= hat i+ hat j+ hat ka n d vec d=3 hat k+2 hat j+ hat k ,t h e n1/7( hat axx hat b)dot( hat cxx hat d) is equal to, r. 4 If | vec a|=| vec b|=| vec c|=2a n d vec adot vec b= vec bdot vec c= vec cdot vec a=2,t h e n[ vec a vec b vec c]cos 45^0 is equal to, s. 5

Let a,b gt 0 and vecalpha=(veci/a+(4hatj)/b+bhatk) and vecbeta = bhati+ahatj+1/bhatk , then the maximum value of 30/(5 + vecalpha.vecbeta) is

If V is the volume of the parallelepiped having three coterminous edges as veca,vecb and vecc , then the volume of the parallelepiped having three coterminous edges as vecalpha = (veca.veca)veca+(veca.vecb)vecb+(veca.vecc)vecc , vecbeta=(vecb.veca)veca+(vecb.vecb)+(vecb.vecc)vecc and veclambda=(vecc.veca)veca+(vecc.vecb)vecb+(vecc.vecc)vecc is