Home
Class 12
MATHS
If vec aa n d vec b are two vectors and...

If ` vec aa n d vec b` are two vectors and angle between them is `theta,` then `| vec axx vec b|^2+( vec adot vec b)^2=| vec a|^2| vec b|^2` `| vec axx vec b|=( vec adot vec b),iftheta=pi//4` ` vec axx vec b=( vec adot vec b) hat n ,(w h e r e hat n` is unit vector,`)` if `theta=pi//4` `( vec axx vec b)dot( vec a+ vec b)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If ( vec axx vec b)^2+( vec a dot vec b)^2=144a n d| vec a|=4, then find the value of | vec b|dot

If vec aa n d vec b are two vectors, then prove that ( vec axx vec b)^2=| vec adot vec a vec adot vec b vec bdot vec a vec bdot vec b| .

If vec a and vec b are two vectors such that | vec axx vec b|=2, then find the value of [ vec a vec b vec axx vec b].

If vec a= vec p+ vec q , vec pxx vec b=0a n d vec qdot vec b=0, then prove that ( vec bxx( vec axx vec b))/( vec bdot vec b)= vec qdot

If vec aa n d vec b are two vectors of magnitude 1 inclined at 120^0 , then find the angle between vec ba n d vec b- vec adot

Find | vec a|a n d| vec b|,if( vec a+ vec b)dot( vec a- vec b) = 8 , | vec a|=8| vec b|dot

Show that ( vec a- vec b)xx( vec a+ vec b)=2( vec axx vec b)dot

If vec a and vec b are two vectors such that vec a + vec b is perpendicular to vec a - vec b ,then prove that |vec a| = |vec b| .

Given that vec adot vec b= vec adot vec c , vec axx vec b= vec axx vec ca n d vec a is not a zero vector. Show that vec b= vec cdot

If vec ba n d vec c are two-noncollinear vectors such that vec a||( vec bxx vec c), then prove that ( vec axx vec b) . ( vec axx vec c) is equal to | vec a|^2( vec bdot vec c)dot