Home
Class 12
MATHS
Let vec a , vec b ,a n d vec c be non-z...

Let ` vec a , vec b ,a n d vec c` be non-zero vectors and ` vec V_1= vec axx( vec bxx vec c)a n d vec V_2( vec axx vec b)xx vec cdot` Vectors ` vec V_1a n d vec V_2` are equal. Then ` vec aa n vec b` are orthogonal b. ` vec aa n d vec c` are collinear c. ` vec ba n d vec c` are orthogonal d. ` vec b=lambda( vec axx vec c)w h e nlambda` is a scalar

Promotional Banner

Similar Questions

Explore conceptually related problems

Let vec a , vec b ,a n d vec c be any three vectors, then prove that [ vec axx vec b vec bxx vec c vec cxx vec a]=[ vec a vec b vec c]^2dot

If vec aa n d vec b are two vectors, then prove that ( vec axx vec b)^2=| vec adot vec a vec adot vec b vec bdot vec a vec bdot vec b| .

Given that vec adot vec b= vec adot vec c , vec axx vec b= vec axx vec ca n d vec a is not a zero vector. Show that vec b= vec cdot

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d)dot (vec b- vec c)!=0,

If vec a , vec ba n d vec c are non coplanar vectors and vec axx vec c is perpendicular to vec axx( vec bxx vec c), then the value of [axx( vec bxx vec c)]xx vec c is equal to a. [ vec a vec b vec c] b. 2[ vec a vec b vec c] vec b c. vec0 d. [ vec a vec b vec c] vec a

If vec a , vec b ,a n d vec c are three non-coplanar non-zero vecrtors, then prove that ( vec a . vec a) vec bxx vec c+( vec a . vec b) vec cxx vec a+( vec a . vec c) vec axx vec b=[ vec b vec c vec a] vec a

If vec a , vec b ,a n d vec c are three vectors such that vec axx vec b= vec c , vec bxx vec c= vec a , vec cxx vec a= vec b , then prove that | vec a|=| vec b|=| vec c|dot

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=0

If vec a , vec ba n d vec c are unit vectors satisfying | vec a- vec b|^2+| vec b- vec c|^2+| vec c- vec a|^2=9, then |2 vec a+5 vec b+5 vec c| is.

If vec a , vec b ,a n d vec c are non-zero vectors such that vec adot vec b= vec adot vec c , then find the geometrical relation between the vectors.