Home
Class 12
MATHS
If vec a+2 vec b+3 vec c=0,t h e n vec ...

If ` vec a+2 vec b+3 vec c=0,t h e n vec axx vec b+ vec bxx vec c+ vec cxx vec a=` `2( vec axx vec b)` b.`6( vec bxx vec c)` c. `3( vec cxx vec a)` d. ` vec0`

Promotional Banner

Similar Questions

Explore conceptually related problems

The length of the perpendicular form the origin to the plane passing through the point a and containing the line vec r= vec b+lambda vec c is a. ([ vec a vec b vec c])/(| vec axx vec b+ vec bxx vec c+ vec cxx vec a|) b. ([ vec a vec b vec c])/(| vec axx vec b+ vec bxx vec c|) c. ([ vec a vec b vec c])/(| vec bxx vec c+ vec cxx vec a|) d. ([ vec a vec b vec c])/(| vec cxx vec a+ vec axx vec b|)

Let the pairs a , ba n dc ,d each determine a plane. Then the planes are parallel if ( vec axx vec c)xx( vec bxx vec d)= vec0 b. ( vec axx vec c)dot( vec bxx vec d)= vec0 c. ( vec axx vec b)xx( vec cxx vec d)= vec0 d. ( vec axx vec b)dot( vec cxx vec d)= vec0

If axx(bxxc)=(axxb)xxc , then ( vec cxx vec a)xx vec b= vec0 b. vec cxx( vec axx vec b)= vec0 c. vec bxx( vec cxx vec a) vec0 d. ( vec cxx vec a)xx vec b= vec bxx( vec cxx vec a)= vec0

If the vectors vec a , vec b ,a n d vec c form the sides B C ,C Aa n dA B , respectively, of triangle A B C ,t h e n (a) vec a . vec b+ vec b . vec c+ vec c . vec a=0 (b) vec axx vec b= vec bxx vec c= vec cxx vec a (c) vec adot vec b= vec bdot vec c= vec c dot vec a (d) vec axx vec b+ vec bxx vec c+ vec cxx vec a=0

If [ vec a vec b vec c]=2, then find the value of [( vec a+2 vec b- vec c)( vec a- vec b)( vec a- vec b- vec c)]dot

For any four vectors, prove that ( vec bxx vec c)dot( vec axx vec d)+( vec cxx vec a)dot( vec bxx vec d)+( vec axx vec b)dot( vec cxx vec d)=0.

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d)dot (vec b- vec c)!=0,

If vec x+ vec cxx vec y= vec a and vec y+ vec cxx vec x= vec b ,where vec c is a nonzero vector, then which of the following is not correct? a. vec x=( vec bxx vec c+ vec a+( vec c . vec a) vec c)/(1+ vec c . vec c) b. vec x=( vec cxx vec b+ vec b+( vec c . vec a) vec c)/(1+ vec c . vec c) c. vec y=( vec axx vec c+ vec b+( vec c . vec b) vec c)/(1+ vec c . vec c) d. none of these

If vec a is parallel to vec bxx vec c , then ( vec axx vec b)dot( vec axx vec c) is equal to a. | vec a|^2( vec b . vec c) b. | vec b|^2( vec a . vec c) c. | vec c|^2( vec a . vec b) d. none of these

If vec a_|_ vec b , then vector vec v in terms of vec aa n d vec b satisfying the equation s vec v . vec a=0a n d vec v . vec b=1a n d[ vec v vec a vec b]=1 is a. vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^2) b. vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^2) c. vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^2) d. none of these