Home
Class 12
MATHS
If vec a , vec b , vec c are unit vecto...

If ` vec a , vec b , vec c` are unit vectors such that ` vec adot vec b=0= vec adot vec c` and the angle between ` vec ba n d vec c` is `pi//3` , then the value of `| vec axx vec b- vec axx vec c|` is `1//2` b. `1` c. `2` d. none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Let vec a , vec b , vec c be three unit vectors and vec a . vec b= vec a . vec c=0. If the angel between vec b and vec c is pi/3 , then find the value of |[ vec a vec b vec c]| .

If vec a, vec b, vec c are unit vectors such that vec a+ vec b+ vec c =0 , find the value of vec a.vec b+ vec b .vec c + vec c. vec a .

If vec a , vec b ,a n d vec c are non-zero vectors such that vec adot vec b= vec adot vec c , then find the geometrical relation between the vectors.

If vec a ,a n d vec b be two non-collinear unit vector such that vec axx( vec axx vec b)=1/2 vec b , then find the angle between vec a ,a n d vec bdot

If vec a and vec b are two vectors such that | vec axx vec b|=2, then find the value of [ vec a vec b vec axx vec b].

If vec aa n d vec b are two vectors, then prove that ( vec axx vec b)^2=| vec adot vec a vec adot vec b vec bdot vec a vec bdot vec b| .

If three unit vectors vec a , vec b ,a n d vec c satisfy vec a+ vec b+ vec c=0, then find the angle between vec aa n d vec bdot

If vec a , vec b ,a n d vec c are three vectors such that vec axx vec b= vec c , vec bxx vec c= vec a , vec cxx vec a= vec b , then prove that | vec a|=| vec b|=| vec c|dot

If vec aa n d vec b are unit vectors such that ( vec a+ vec b).(2 vec a+3 vec b)xx(3 vec a-2 vec b)=0 , then angle between veca and vec b is a. 0 b. pi//2 c. pi d. indeterminate

Given that vec adot vec b= vec adot vec c , vec axx vec b= vec axx vec ca n d vec a is not a zero vector. Show that vec b= vec cdot