Home
Class 12
MATHS
If a is real constant A ,Ba n dC are v...

If `a` is real constant `A ,Ba n dC` are variable angles and `sqrt(a^2-4)tanA+atanB+sqrt(a^2+4)tanc=6a ,` then the least vale of `tan^2A+tan^2b+tan^2Ci s` `6` b. `10` c. `12` d. `3`

A

6

B

10

C

12

D

3

Text Solution

Verified by Experts

The given relation can be rewritten as the vector expression
` (sqrt(a^(2)-4) hati + ahatj + sqrt(a^(2) + 4hatk)`
` (tan A hati tanB hatj + tan C hatk) = 6a`
`( sqrt( a^(2) -4 =a^(2) =a^(2) +4))`
`(sqrt(tan^(2)A + tan^(2) B+ tan^(2) C)). (cos theta) = 6a`
` ( veca. vecb = |veca||vecb|cos theta)`
` sqrt3 a sqrt(tan^(2) A + tan^(2) B + tan^(2)C). (cos theta) = 6a`
`tan^(2) A + tan^(2)B + tan^(2)C = 12 sec^(2) theta ge 12`
` (sec^(2) theta ge 1)`
the least value of `tan^(2) A + tan^(2)B + tan^(2)B+ tan^(2)C is 12`.
Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle tan A+ tan B + tan C=6 and tan A tan B= 2, then the values of tan A, tan B and tan C are

In triangle ABC, prove that the maximum value of tan(A/2)tan(B/2)tan(C/2)i s R/(2s)

Prove that tan3A=(3tanA-tan^3 A)/(1-3tan^2 A)

Solve tan theta+tan 2 theta+sqrt(3) tan theta tan 2 theta = sqrt(3) .

In a triangle ABC if tan.(A)/(2)tan.(B)/(2)=(1)/(3) and ab = 4, then the value of c can be

if ABC is a triangle and tan(A/2), tan(B/2), tan(C/2) are in H.P. Then find the minimum value of cot(B/2)

If secx+sec^2x=1 then the value of tan^8x-tan^4x-2tan^2x+1 will be equal to 0 (b) 1 (c) 2 (d) 3

If A+B+C=pi, prove that tan^2A/2+tan^2B/2+tan^2C/2geq1.

In acute angled triangle ABC prove that tan ^(2)A+tan^(2)B+tan^(2)Cge9 .

In a right angled triangle, acute angle A and B satisfy tanA+tanB+tan^2A+tan^2B+tan^3A+tan^3B=70. Find the angle A and B in radians.