Home
Class 12
MATHS
The position vectors of the vertices ...

The position vectors of the vertices `A ,Ba n dC` of a triangle are three unit vectors ` vec a , vec b ,a n d vec c ,` respectively. A vector ` vec d` is such that ` vecd dot vec a= vecd dot vec b= vec d dot vec ca n d vec d=lambda( vec b+ vec c)dot` Then triangle `A B C` is a. acute angled b. obtuse angled c. right angled d. none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=0

If three unit vectors vec a , vec b ,a n d vec c satisfy vec a+ vec b+ vec c=0, then find the angle between vec aa n d vec bdot

If vec a , vec b ,a n d vec c are three vectors such that vec axx vec b= vec c , vec bxx vec c= vec a , vec cxx vec a= vec b , then prove that | vec a|=| vec b|=| vec c|dot

Prove that [ vec a, vec b, vec c + vec d] = [ vec a, vec b, vec c] + [ vec a, vec b , vec d] .

If vec a , vec b ,a n d vec c are non-zero vectors such that vec adot vec b= vec adot vec c , then find the geometrical relation between the vectors.

If vec aa n d vec b are two vectors, then prove that ( vec axx vec b)^2=| vec adot vec a vec adot vec b vec bdot vec a vec bdot vec b| .

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d)dot (vec b- vec c)!=0,

Let vec a , vec b ,a n d vec c be any three vectors, then prove that [ vec axx vec b vec bxx vec c vec cxx vec a]=[ vec a vec b vec c]^2dot

If the angel between unit vectors vec aa n d vec b60^0 , then find the value of | vec a- vec b|dot

Let vec aa n d vec b be unit vectors such that | vec a+ vec b|=sqrt(3) . Then find the value of (2 vec a+5 vec b)dot(3 vec a+ vec b+ vec axx vec b)dot