Home
Class 12
MATHS
Given that vec a , vec b , vec p , vec ...

Given that ` vec a , vec b , vec p , vec q` are four vectors such that ` vec a+ vec b=mu vec p , vec b*vec q=0a n d|vec b|^2=1,w h e r emu` is a scalar. Then `|( vec adot vec q) vec p-( vec pdot vec q) vec a|` is equal to (a) `2| vec p . vec q|` (b) `(1//2)| vec p . vec q|` (c) `| vec pxx vec q|` (d) `| vec p . vec q|`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that [ vec a, vec b, vec c + vec d] = [ vec a, vec b, vec c] + [ vec a, vec b , vec d] .

If vec a , vec b ,a n d vec c are three vectors such that vec axx vec b= vec c , vec bxx vec c= vec a , vec cxx vec a= vec b , then prove that | vec a|=| vec b|=| vec c|dot

If vec a, vec b, vec c are unit vectors such that vec a+ vec b+ vec c =0 , find the value of vec a.vec b+ vec b .vec c + vec c. vec a .

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d)dot (vec b- vec c)!=0,

If vec a= vec p+ vec q , vec pxx vec b=0a n d vec qdot vec b=0, then prove that ( vec bxx( vec axx vec b))/( vec bdot vec b)= vec qdot

If vec a and vec b are two vectors such that | vec axx vec b|=2, then find the value of [ vec a vec b vec axx vec b].

Find |vec a - vec b| , if two vectors vec a and vec b are such that |vec a | = 2, |vec b| = 3 and vec a.vec b = 4 .

If vec a , vec b ,a n d vec c are three non-coplanar non-zero vecrtors, then prove that ( vec a . vec a) vec bxx vec c+( vec a . vec b) vec cxx vec a+( vec a . vec c) vec axx vec b=[ vec b vec c vec a] vec a

If vec a and vec b are two vectors such that vec a + vec b is perpendicular to vec a - vec b ,then prove that |vec a| = |vec b| .

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=0