Home
Class 12
MATHS
In a quadrilateral A B C D , vec A C is ...

In a quadrilateral `A B C D , vec A C` is the bisector of ` vec A Ba n d vec A D` , angle between ` vec A Ba n d vec A D` is `2pi//3` , `15| vec A C|=3| vec A B|=5| vec A D|dot` Then the angle between ` vec B Aa n d vec C D` is `cos^(-1)(sqrt(14))/(7sqrt(2))` b. `cos^(-1)(sqrt(21))/(7sqrt(3))` c. `cos^(-1)2/(sqrt(7))` d. `cos^(-1)(2sqrt(7))/(14)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If | vec a|+| vec b|=| vec c|a n d vec a+ vec b= vec c , then find the angle between vec aa n d vec bdot

If three unit vectors vec a , vec b ,a n d vec c satisfy vec a+ vec b+ vec c=0, then find the angle between vec aa n d vec bdot

If vec a ,a n d vec b be two non-collinear unit vector such that vec axx( vec axx vec b)=1/2 vec b , then find the angle between vec a ,a n d vec bdot

If vec aa n d vec b are two vectors, such that vec adot vec b<0a n d| vec adot vec b|=| vec axx vec b|, then the angle between vectors vec aa n d vec b is pi b. 7pi//4 c. pi//4 d. 3pi//4

Let the vectors vec aa n d vec b be such that | vec a|=3| vec b|=(sqrt(2))/3,t h e n vec axx vec b is a unit vector, if the angel between vec aa n d vec b is?

ABCDE is a pentagon .prove that the resultant of force vec A B , vec A E , vec B C , vec D C , vec E D and vec A C ,is 3 vec A C .

If vec a , vec b ,a n d vec c are such that [ vec a vec b vec c]=1, vec c=lambda vec axx vec b , angle, between vec aa n d vec b is (2pi)/3,| vec a|=sqrt(2),| vec b|=sqrt(3)a n d| vec c|=1/(sqrt(3)) , then the angel between vec aa n d vec b is a. pi/6 b. pi/4 c. pi/3 d. pi/2

If vec aa n d vec b are any two vectors of magnitudes 1 and 2, respectively, and (1-3 vec adot vec b)^2+|2 vec a+ vec b+3( vec axx vec b)|^2=47 , then the angel between vec aa n d vec b is a. pi//3 b. pi-cos^(-1)(1//4) c. (2pi)/3 d. cos^(-1)(1//4)

If vec aa n d vec b are two vectors of magnitude 1 inclined at 120^0 , then find the angle between vec ba n d vec b- vec adot

Let vec a , vec ba n d vec c be unit vectors, such that vec a+ vec b+ vec c= vec x , vec adot vec x=1, vec bdot vec x=3/2,| vec x|=2. Then find the angel between cc and xxdot