Home
Class 12
MATHS
Let vec a=2i+j+k , vec b=i+2j-k and a u...

Let ` vec a=2i+j+k , vec b=i+2j-k` and a unit vector ` vec c` be coplanar. If ` vec c` is perpendicular to ` vec a ,` then ` vec c` is `1/(sqrt(2))(-j+k)` b. `1/(sqrt(3))(-i-j-k)""` c. `1/(sqrt(5))(-k-2j)` d. `1/(sqrt(3))(i-j-k)`

A

`1/sqrt2(-j+k)`

B

`1/sqrt3(i-j-k)`

C

`1/sqrt5(i-2j)`

D

`1/sqrt3(i-j-k)`

Text Solution

Verified by Experts

As `vecc` is coplanar with `veca and vecb` we take
`vecc = alpha veca + betavecb`
where `alpha and beta` are scalars.
As `vecc` is perpendicular to `veca` , using (i), we get
`0 = alphaveca.veca alpha +betavecb.veca`
`or 0 =alpha (6) +beta(2+2-1) =3 (2alpha+beta) `
`or beta = -2alpha`
Thus `vecc=alpha(veca -2vecb)=alpha(-3j+3k)=3alpha(-j+k)`
`or |vecc|^(2)=18alpha^(2)`
`or 1=18alpha^(2)`
`or alpha= +- 1/(3sqrt2)`
`vecc =+- 1/sqrt2 (-j+k)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find a unit vector vec c if vec -i+vec j-vec k bisects the angle between vec c and 3 vec i+4vec j .

If vec a = hat i - hat j and vec b = hat j + hat k then |vec a xx vec b|^(2) + |vec a. vecb|^(2) is equal to

If vec a= hat i+ hat j+ hat ka n d vec b= hat i-2 hat j+ hat k , then find vector vec c such that vec adot vec c=2a n d vec axx vec c= vec bdot

Let vec a= hat i- hat j , vec b= hat j- hat ka n d vec c= hat k- hat i. If vec d is a unit vector such that vec a.vec d=0=[ vec b vec c vec d], then d equals a. +-( hat i+ hat j-2 hat k)/(sqrt(6)) b. +-( hat i+ hat j- hat k)/(sqrt(3)) c. +-( hat i+ hat j+ hat k)/(sqrt(3)) d. +- hat k

If vec a = 2 hat i + 2 hat j + 3 hat k , vec b = - hat i + 2 hat j + hat k and vec c = 3 hat i + hat j are such that vec a + lambda vec b is perpendicular to vec c , then find the value of lambda .

If vec a = hat i + 2 hat j - 3 hat k and vec b = 3 hat i - hat j + 2 hat k , then vec a + vec b and vec a - vec b are

For given vectors vec a = 2 hat i - hat j + 2 hat k and vec b = - hat i + hat j - hat k , find the unit vector in the direction of the vector vec a + vec b .

Find lambda if the vectors vec a= vec i+3 vec j+ vec k , vec b= 2 vec i- vec j- vec k and vec c= lambda vec i+7 vec j+ 3 vec k are coplanar

Let vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec c= hat i- hat j- hat k be three vectors. A vector vec v in the plane of vec aa n d vec b , whose projection on vec c is 1/(sqrt(3)) is given by a. hat i-3 hat j+3 hat k b. -3 hat i-3 hat j+3 hat k c. 3 hat i- hat j+3 hat k d. hat i+3 hat j-3 hat k

A non-zero vector vec a is such that its projections along vectors ( hat i+ hat j)/(sqrt(2)),(- hat i+ hat j)/(sqrt(2)) and hat k are equal, then unit vector along vec a is (sqrt(2) hat j- hat k)/(sqrt(3)) b. ( hat j-sqrt(2) hat k)/(sqrt(3)) c. (sqrt(2))/(sqrt(3)) hat j+( hat k)/(sqrt(3)) d. ( hat j- hat k)/(sqrt(2))