Home
Class 12
MATHS
vec p , vec q ,a n d vec r are three mu...

` vec p , vec q ,a n d vec r` are three mutually perpendicular vectors of the same magnitude. If vector ` vec x` satisfies the equation ` vec pxx(( vec x- vec q)xx vec p)+ vec qxx(( vec x- vec r)xx vec q)+ vec rxx(( vec x- vec p)xx vec r)=0,t h e n vec x` is given by a.`1/2( vec p+ vec q-2 vec r)` b. `1/2( vec p+ vec q+ vec r)""` c. `1/3( vec p+ vec q+ vec r)` d. `1/3(2 vec p+ vec q- vec r)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a, vec b, vec c are any three mutually perpendicular vectors of equal magnitude a, then |vec a+ vec b+ vec c| is equal to

Prove that vec a xx (vec b + vec c) + vec b xx(vec a + vec c)+ vec c xx(vec a + vec b) = vec 0

If vec a , vec b ,a n d vec c are there mutually perpendicular unit vectors and vec d is a unit vector which makes equal angles with vec a , vec b ,a n d vec c , the find the value off | vec a+ vec b+ vec c+ vec d|^2dot

Show that (vec a - vec b) xx (vec a + vec b) = 2 (vec a xx vec b)

Prove that if the vectors vec a, vec b, vec c satisfy vec a+ vec b + vec c = vec 0 , then vec bxx vec c = vec c xx vec a = vec a xx vec b

If vec a , vec ba n d vec c are three mutually perpendicular vectors, then the vector which is equally inclined to these vectors is a. vec a+ vec b+ vec c b. vec a/(| vec a|)+ vec b/(| vec b|)+ vec c/(| vec c|) c. vec a/(| vec a|^2)+ vec b/(| vec b|^2)+ vec c/(| vec c|^2) d. | vec a| vec a-| vec b| vec b+| vec c| vec c

Let vec a , vec ba n d vec c be pairwise mutually perpendicular vectors, such that | vec a|=1,| vec b|=2,| vec c|=2. Then find the length of vec a+ vec b+ vec c

If vec a= vec p+ vec q , vec pxx vec b=0a n d vec qdot vec b=0, then prove that ( vec bxx( vec axx vec b))/( vec bdot vec b)= vec qdot

If vectors b ,ca n dd are not coplanar, then prove that vector ( vec axx vec b)xx( vec cxx vec d)+( vec axx vec c)xx( vec d xx vec b)+( vec axx vec d)xx( vec bxx vec c) is parallel to vec adot

Let vec aa n d vec b be two non-zero perpendicular vectors. A vecrtor vec r satisfying the equation vec rxx vec b= vec a can be vec b-( vec axx vec b)/(| vec b|^2) b. 2 vec b-( vec axx vec b)/(| vec b|^2) c. | vec a| vec b-( vec axx vec b)/(| vec b|^2) d. | vec b| vec b-( vec axx vec b)/(| vec b|^2)