Home
Class 12
MATHS
Let vec r be a non-zero vector satisf...

Let ` vec r` be a non-zero vector satisfying ` vec r . vec a= vec r . vec b= vec r . vec c=0` for given non-zero vectors ` vec a , vec ba n d vec cdot` Statement 1: `[ vec a- vec b vec b- vec c vec c- vec a]=0` Statement 2: `[ vec a vec b vec c]=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

The non-zero vectors vec a , vec b and vec c are related by vec a=8 vec b and vec c = −7 vec b , then the angle between vec a and vec c is

If vec a , vec ba n d vec c are unit vectors satisfying | vec a- vec b|^2+| vec b- vec c|^2+| vec c- vec a|^2=9, then |2 vec a+5 vec b+5 vec c| is.

Show that the vectors vec a, vec b and vec c are coplanar if vec a + vec b, vec b + vec c, vec c+ vec a are coplanar.

For any three vectors veca, vec b, vec c prove that (vec a + vec b)+ vec c = vec a + (vec b + vec c)

Prove that [ vec a, vec b, vec c + vec d] = [ vec a, vec b, vec c] + [ vec a, vec b , vec d] .

If vec rdot vec a= vec rdot vec b= vec rdot vec c=0,w h e r e vec a , vec b ,a n d vec c are non-coplanar, then vec r_|_( vec cxx vec a) b. vec r_|_( vec axx vec b) c. vec r_|_( vec bxx vec c) d. vec r= vec0

Let vec r be a unit vector satisfying vec rxx vec a= vec b ,w h e r e| vec a|=3a n d| vec b|=2. Then vec r=2/3( vec a+ vec axx vec b) b. vec r=1/3( vec a+ vec axx vec b c. vec r=2/3( vec a- vec axx vec b d. vec r=1/3(- vec a+ vec axx vec b

Prove that if the vectors vec a, vec b, vec c satisfy vec a+ vec b + vec c = vec 0 , then vec bxx vec c = vec c xx vec a = vec a xx vec b

For any three vectors vec a, vec b , vec c , show that vec a xx (vec b + vec c) + vec b xx (vec c + vec a) + vec c xx (vec a + vec b) = 0

If vec a, vec b, vec c are unit vectors such that vec a+ vec b+ vec c =0 , find the value of vec a.vec b+ vec b .vec c + vec c. vec a .