Home
Class 12
MATHS
Let vectors vec a , vec b , vec c ,a n ...

Let vectors ` vec a , vec b , vec c ,a n d vec d` be such that `( vec axx vec b)xx( vec cxx vec d)=0.` Let `P_1a n dP_2` be planes determined by the pair of vectors ` vec a , vec b ,a n d vec c , vec d ,` respectively. Then the angle between `P_1a n dP_2` is a.`0` b. `pi//4` c. `pi//3` d. `pi//2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the vectors, vec(a),vec(b),vec(c),vec(d) such that (vec(a)xxvec(b))xx(vec(c)xxvec(d))=vec(0)" Let "P_(1)andP_(2) be the planes determined by the pairs of vectors, vec(a),vec(b)andvec(c),vec(d) respectively. Then the angle between P_(1)andP_(2) is

If three unit vectors vec a , vec b ,a n d vec c satisfy vec a+ vec b+ vec c=0, then find the angle between vec aa n d vec bdot

If vec(a),vec(b),vec(c) are coplanar vectors, show that (vec(a)xxvec(b))xx(vec(c)xxvec(d))=vec(0)

If | vec a|+| vec b|=| vec c|a n d vec a+ vec b= vec c , then find the angle between vec aa n d vec bdot

Prove that [ vec a, vec b, vec c + vec d] = [ vec a, vec b, vec c] + [ vec a, vec b , vec d] .

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d)dot (vec b- vec c)!=0,

Let vec a , vec b ,a n d vec c be any three vectors, then prove that [ vec axx vec b vec bxx vec c vec cxx vec a]=[ vec a vec b vec c]^2dot

If vec a , vec b ,a n d vec c are three vectors such that vec axx vec b= vec c , vec bxx vec c= vec a , vec cxx vec a= vec b , then prove that | vec a|=| vec b|=| vec c|dot

If vec aa n d vec b are two vectors, such that vec adot vec b<0a n d| vec adot vec b|=| vec axx vec b|, then the angle between vectors vec aa n d vec b is pi b. 7pi//4 c. pi//4 d. 3pi//4

If vec a , vec b ,a n d vec c are such that [ vec a vec b vec c]=1, vec c=lambda vec axx vec b , angle, between vec aa n d vec b is (2pi)/3,| vec a|=sqrt(2),| vec b|=sqrt(3)a n d| vec c|=1/(sqrt(3)) , then the angel between vec aa n d vec b is a. pi/6 b. pi/4 c. pi/3 d. pi/2