Home
Class 12
MATHS
Let vecf(t)=[t] hat i+(t-[t]) hat j+[t+...

Let ` vecf(t)=[t] hat i+(t-[t]) hat j+[t+1] hat k , w h e r e[dot]` denotes the greatest integer function. Then the vectors ` vecf(5/4)a n df(t),0lttlti` are(a) parallel to each other(b) perpendicular(c) inclined at `cos^(-1)2 (sqrt(7(1-t^2)))` (d)inclined at `cos^(-1)((8+t)/sqrt (1+t^2))`;

Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^x(2^t)/(2^([t]))dt ,w h e r e[dot] denotes the greatest integer function and x in R^+ , is equal to

Find the value of t which satisfies (t-[|sin x|])! =3!5!7! w h e r e[dot] denotes the greatest integer function.

Let R=(5sqrt(5)+11)^(2n+1)a n df=R-[R]w h e r e[] denotes the greatest integer function, prove that Rf=4^(2n+1)

Integrate the following w.r.t. x. (e^(cos^(-1)x))/(sqrt(1-x^(2)))

T h ev a l u eofint_(-2)^1[x[1+cos((pix)/2)]+1]dx , where [.] denotes the greatest integer function, is 1 (b) 1//2 (c) 2 (d) none of these

Find the derivative of the function g(t) = ((t-2)/(2t+1)) .

Evaluate int_(-oo)^(0)(te^(t))/(sqrt(1-e^(2t)))dt

Integrate the functions e^(t)((1)/(t)-(1)/(t^(2)))

If the velocity is vec(v) = 2 hat(i) + t^(2) hat(j) - 9 vec(k) , then the magnitude of acceleration at t = 0 . 5 s is :

Find the Cartesian form of the equation of the plane vec(r)=(s-2t)hat(i)+(3-t)hat(j)(2s+t)hat(k)