Home
Class 12
MATHS
If vec a is parallel to vec bxx vec c ...

If ` vec a` is parallel to ` vec bxx vec c` , then `( vec axx vec b)dot( vec axx vec c)` is equal to a.`| vec a|^2( vec b . vec c)` b. `| vec b|^2( vec a . vec c)` c. `| vec c|^2( vec a . vec b)` d. none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a , vec ba n d vec c are non coplanar vectors and vec axx vec c is perpendicular to vec axx( vec bxx vec c), then the value of [axx( vec bxx vec c)]xx vec c is equal to a. [ vec a vec b vec c] b. 2[ vec a vec b vec c] vec b c. vec0 d. [ vec a vec b vec c] vec a

Value of [ vec axx vec b vec axx vec c vec d] is always equal to ( vec a . vec d)[ vec a vec b vec c] b. ( vec a . vec c)[ vec a vec b vec d] c. ( vec a . vec b)[ vec a vec b vec d] d. none of these

Let vec a , vec ba n d vec c be three non-coplanar vecrors and vec r be any arbitrary vector. Then ( vec axx vec b)xx( vec rxx vec c)+( vec bxx vec c)xx( vec rxx vec a)+( vec cxx vec a)xx( vec rxx vec b) is always equal to [ vec a vec b vec c] vec r b. 2[ vec a vec b vec c] vec r c. 3[ vec a vec b vec c] vec r d. none of these

Show that ( vec a- vec b)xx( vec a+ vec b)=2( vec axx vec b)dot

If vec a+2 vec b+3 vec c=0,t h e n vec axx vec b+ vec bxx vec c+ vec cxx vec a= 2( vec axx vec b) b. 6( vec bxx vec c) c. 3( vec cxx vec a) d. vec0

If vec a_|_ vec b , then vector vec v in terms of vec aa n d vec b satisfying the equation s vec v . vec a=0a n d vec v . vec b=1a n d[ vec v vec a vec b]=1 is a. vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^2) b. vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^2) c. vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^2) d. none of these

If vec a and vec b are orthogonal unit vectors, then for a vector vec r noncoplanar with vec a and vec b , vector rxxa is equal to a. [ vec r vec a vec b] vec b-( vec r. vec b)( vec bxx vec a) b. [ vec r vec a vec b]( vec a+ vec b) c. [ vec r vec a vec b] vec a-( vec r. vec a) vec axx vec b d. none of these

If vec d= vec axx vec b+ vec bxx vec c+ vec cxx vec a is non-zero vector and |( vec d * vec c)( vec axx vec b)+( vec d* vec a)( vec bxx vec c)+( vec d*vec b)( vec cxx vec a)|=0, then a. | vec a|=| vec b|=| vec c| b. | vec a|+| vec b|+| vec c|=|d| c. vec a , vec b ,a n d vec c are coplanar d. none of these

If vec x+ vec cxx vec y= vec a and vec y+ vec cxx vec x= vec b ,where vec c is a nonzero vector, then which of the following is not correct? a. vec x=( vec bxx vec c+ vec a+( vec c . vec a) vec c)/(1+ vec c . vec c) b. vec x=( vec cxx vec b+ vec b+( vec c . vec a) vec c)/(1+ vec c . vec c) c. vec y=( vec axx vec c+ vec b+( vec c . vec b) vec c)/(1+ vec c . vec c) d. none of these

The scalar vec Adot ( ( vec B+ vec C)xx( vec A+ vec B+ vec C)) equals a. 0 b. [ vec A vec B vec C]+[ vec B vec C vec A] c. [ vec A vec B vec C] d. none of these